Гмурман руководство к решению задач 1997

В.Е. ГМУРМАНРуководствок решению задачпо теориивероятностейи математическойстатистжеИздание девятое, стереотипноеРекомендованоМинистерством образованияРоссийской Федерациив качестве учебного пособиядля студентов вузовМосква«Высшая школа» 2 0 0 4У Д К 519.2Б Б К 22.171Г 55I S B N 5-06-004212-Х© ФГУП «Издательство «Высшая школа», 2004Оригинал-макет данного издания является собственностью издательства«Высшая пшола», и его репродуцирование (воспроизведение) любым способомбез согласия издательства запрещается.ОГЛАВЛЕНИЕЧАСТЬ ПЕРВАЯСЛУЧАЙНЫЕ СОБЫТИЯГлава первая.

<§ 1. Классическое и статистическое определения вероятности…§ 2. Геометрические вероятностиГлава вторая. Осионпие теоремы§§§§1. Теорема сложения и умножения вероятностей2. Вероятность появления хотя бы одного события3. Формула полной вероятности4. Формула БейесаГлава третья. Попорешю •саытшшй§ 1. Формула Бернулли§ 2. Локальная и интегральная теоремы Лапласа§ 3. Отклонение относительной частоты от постоянной верояггности в независимых испытаниях§ 4. Наивероятнейшее число появлений события в независимыхиспытаниях§ 5.

Производящая функция8121818293132373739434650ЧАСТЬ ВТОРАЯСЛУЧАЙНЫЕ ВЕЛИЧИНЫГлава четвертая. Дшсшретие сяучаЛиые велрвош§ Ь Закон распределения вероетноетей дискретной случайнойвеличины. Законы биномиальный и Пуассона52523§ 2. Простейший поток событий§ 3. Числовые хараюеристики дискретных случайных величин.§ 4. Теоретические моментыГлава пятая. Запш большвх чисел§ 1. Неравенство Чебышева§ 2. Теорема Чебышева606379828285Глава шестая.

Фувкщш н nJurraocni распределеии вероятностей слу§ 1. Функция распределения вероятностей случайной величины§ 2. Плотность распределения вероятностей непрерывной слу­чайной величины§ 3. Числовые характеристики непрерывных случайных величин§ 4. Равномерное распределение§ 5. Нормальное распределение§ 6. Показательное распределение и его числовые характеристики§ 7. Функция надежностиГлава седьмая. Распределение функции одного и даух слдгчайных apiyмеигов§ 1. Функция одного случайного аргумента§ 2. Функция двух случайных аргументовГлава восьмая. Система двух случайных величин§ 1.

Закон распределения двумерной случайной величины§ 2. Условные законы распределения вероятностей составля­ющих дис1фетной двумерной случайной величины§ 3. Отыскание плотностей и условных законов распределениясоставляющих непрерывной двумерной случайной величины….§ 4. Числовые характеристики непрерывной системы двух слу­чайных величин879194106109114119121121132137137142144146ЧАСТЬ ТРЕТЬЯЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИГлава девятая. Выборочный метод§ 1. Статистическое распределение выборки§ 2. Эмпирическая функция распределения§ 3. Полигон и гистограммаГлава десятая.

Спгпкппескне оценки нарвиетрои расиределення…..§ 1. Точечные оценки4151151152152157157§ 2. Метод моментов§ 3. Метод наибольшего правдоподобия§ 4. Интервальные оценкиГлава одиннадцатая. Методы расчета сводных характеристик выборки§ 1. Метод произведений вычисления выборочных средней идисперсии§ 2. Метод сумм вычисления выборочньпс средней и дисперсии§ 3. Асимметрия и эксцесс эмпирического распределенияГлава двенадцатая. Элементы теории корреляции%.

Линейная корреляция§ 2. Криволинейная корреляция§ 3. Ранговая корреляция163169174181181184186190190196201Глава тринадцатая. Статисгаческая проверка спггастических гапотез 206§ 1. Основные сведения§ 2. Сравнение двух дисперсий нормальных генеральных сово­купностей§ 3. Сравнение исправленной выборочной дисперсии сгипотетической генеральной дисперсией нормальной совокуп­ности§ 4. Сравнение двух средних генеральных совокупностей,дисперсии которых известны (большие независимые выборки).§ 5.

Сравнение двух средних нормальных генеральных совокуп­ностей, дисперсии которых неизвестны и одинаковы (малыенезависимые выборки)§ 6. Сравнение выборочной средней с гипотетической генераль­ной средней нормальной совокупности§ 7. Сравнение двух средних нормальных генеральных совокуп­ностей с неизвестными дисперсиями (зависимые выборки)§ 8. Сравнение наблюдаемой относительной частоты сгипотетической вероятностью появления события§ 9. Сравнение нескольких дисперсий нормальных генеральныхсовокупностей по выборкам различного объема.

Критерий Бартлетта§ 10. Сравнение нескольких дисперсий нормальных генеральныхсовокупностей по выборкам одинакового объема. Критерий Кочрена§11. Сравнение двух вероятностей биномиальных распределений§ 12. Проверка гипотезы о значимости выборочногокоэффициента корреляции§ 13. Проверка гипотезы о значимости выборочногокоэффициента ранговой корреляции Спирмена206207210213215218226229231234237239244§ 14.

Проверка гипотезы о значимости выборочного коэф­фициента ранговой корреляции Кецдалла§ 15. Проверка гипотезы об однородности двух выборок по]фитерию Вилкоксона§ 16. Проверка гипотезы о нормальном распределении генераль­ной совокупности по критерию Пирсона§ 17. Графическая проверка гипотезы о нормальном распреде­лении генеральной совокупности. Метод спрямленных диаграмм§ 18. Проверка гипотезы о показательном распределении гене­ральной совокупности§ 19.

Проверка гипотезы о распределении генеральной совокуп­ности по биномиальному закону§ 20. Проверка гипотезы о равномерном распределении генераль­ной совокупности§ 21. Проверка гипотезы о распределении генеральной совокуп­ности по закону ПуассонаГлава четырнадцатая. Одрюфиториый дкперсвошшй ашшв§ 1.

Одинаковое число испытаний на всех уровнях§ 2. Неодинаковое число испытаний на различных уровнях24624725125 9268272275279283283289ЧАСТЬ ЧЕТВЕРТАЯМОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИНГлава пятнадцатая. Моделаромшю (разыгрышипе) сяучшЛшиквелпш методом Мовте-Карло§ 1. Разыгрывание дискретной случайной величины§ 2. Разыгрывание полной группы событий§ 3. Разыгрывание непрерывной случайной величины§ 4. Приближенное разыгрывание нормальной случайнойвеличины§ 5. Разыгрывание двумерной случайной величины§ 6.

Оценка надежности простейших систем методом МонтеКарло§ 7. Расчет систем массового обслуживания с отказами методомМонге-Карло§ 8. Вычисление определенных икгегралов методом Мон­те-Карло294294295297302303307311317ЧАСТЬ ПЯТАЯСЛУЧАЙНЫЕ ФУНКЦИИГлава шестнадцатая. Корреляцрошиш теорш сяучшЁяых футщЛ ••••§ 1. Основные понятия. Характеристики случайных функций…6330330§ 2. Характеристики суммы случайных функций§ 3. Характеристики производной от случайной функции§ 4.

Характеристики интеграла от случайной функцииГлава семнадцатая. Стацкоиярные случайные функции§ 1. Характеристики стационарной случайной функции§ 2. Стационарно связанные случайные функции§ 3. Корреляционная функция производной от стационарнойслучайной функции§ 4. Корреляционная фушощя интеграла от стационарной слу>чайной функции§ 5. Взаимная корреляционная функция дифференцируемойстационарной случайной функции и ее производных§ 6.

Спектральная плотность стационарной случайной функции§ 7. Преобразование стационарной случайной функциистационарной линейной динамической системойОтветыПриложения337339342347347351352355357360369373387Часть перваяСЛУЧАЙНЫЕ СОБЫТИЯГлава перваяОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ§ 1. Классическое и статистическоеопределение вероятностиПри классическом определении вероятность события опреле^-хпется равенствомР(А)^т/п.где Л1—число элементарных исходов испытания, благоприятствующихпоявлению события А; п—общее число возможных элементарныхисходов испытания. Предполагается, что элементарные исходы обра­зуют полную группу и равновозможны.Относительная частота события А определяется равенствомWiA)^m/n,где т—число испытаний, в которых событие А наступило; п —общеечисло произведенных испытаний.При статистическом определении в качестве вероятности событияпринимают его относительную частоту.1.

Брошены две игральные кости. Найти вероятность того, чтосумма очков на выпавших гранях—четная, причем на срани хотя(кд одирй из костей появится шестерка.Р е ш е н и е . На выпавшей грани «первой)^ игральной косги мо*жет появиться одно очко, два очка, . . . , шесть очков. Аналогич­ные шес1ъ элементарных исходов возможны при бросании «второй»кости. Каждый из исходов бросания «первой» кости может сочетаться с каждым из исходов бросания «второй».

Таким образом, общеечисло возможных элементарных исходов испытания равно 6-6’=^-36.Эти исходы образуют полную группу и в силу симметрии костейравновозможны.Благоприятствующими интересующему нас событию (хотя бы на од­ной грани появится шестерка, сумма выпавших очков — четная) явля­ются следующие пять исходов (первым записано число очков, выпав­ших на «первой» кости, вторым—число очков, выпавших на «второй»кости; далее найдена сумма очков):1) 6, 2; 64-2 = 8, 2) 6, 4; 6 + 4-= 10. 3) 6, 6; 6-f6=rl2, 4) 2.

6:2 + 6-«8. 5) 4, 6; 4 + 6 = 1 0 .Искомая вероятность равна отношению числа исходов, благопри­ятствующих событию, к числу всех возможных элементарных исхо­дов: Я = 5/36.2. При перевозке ящика, в котором содержались 21 стандартнаяя 10 нестандартных деталей, утеряна одна деталь, причем неизвестнокакая. Наудачу извлеченная (после перевозки) из ящика детальоказалась стандартной. Найти вероятность того, что была утеряна:а) стандартная деталь; б) нестандартная деталь.Р е ш е н и е , а) Извлеченная стандартная деталь, очевидно, немогла быть утеряна; могла быть потеряна любая из остальных 30детглей (21-Ь10 — 1 = 3 0 ) , причем среди них было 20 стандартных(21—1=20).

Вероятность того, что была потеряна стандартная де­таль, Р = 20/30 =.2/3.б) Среди 30 деталей, каждая из которых могла быть утеряна, бы­ло 10 нестандартных. Вероятность того, что потеряна нестандартнаядеталь, Р == 10/30-^ 1/3.3. Задумано двузначное число. Найти вероятностьтого, что задуманным числом окажется: а) случайно на­званное двузначное число; б) случайно названное двузнач­ное число, цифры которого различны.4.

Указать ошибку «решения» задачи: брошены двеигральные кости; найти вероятность того, что сумлш вы­павших очков равна 3 (событие А).«Р е ш е н и е>. Возможны два исхода испытания: сумма выпавшихочков равна 3, сумма выпавших очков не равна 3. Отбытию Л 6.iaroприятствует один исход; общее число исходов равно двум. Следова­тельно, искомая вероятность Р(>4)~1/2.Ошибка этого «решения» состоит в том, что рассматриваемые ис­ходы не являются равновозможными.П р а в и л ! ь н о е р е ш е н и е .

libcats.org

Главная

Руководство к решению задач

Обложка книги Руководство к решению задач

Руководство к решению задач

Учебное пособие содержит в основном весь материал программы по теории вероятностей и математической статистике. Большое внимание уделено статистическим методам обработки экспериментальных данных. В конце каждой главы помешены задачи с ответами.
Предназначается для студентов вузов и лиц, использующих вероятностные и статистические методы при решении практических задач.

В руководстве к решению задач приведены необходимые теоретические сведения и формулы, даны решения типовых задач, помещены задачи для самостоятельного решения, сопровождающиеся ответами и указаниями. Большое внимание уделено методам статистической обработки экспериментальных данных.
Для студентов вузов. Может быть полезно лицам, применяющим вероятностные и статистические методы при решении практических задач.

Метки темы:
Статистика

Популярные книги за неделю:

Только что пользователи скачали эти книги:

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5


Гмурман

Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике:Учебное пособие для студентов ВТУЗов.-3-е изд. перераб. и доп.-М.: Высш. школа, 1979.-400с., нл.

Брошены две игральные кости. Найти вероятность того, что сумма очков на выпавших гранях – чётная, причём на грани хотя бы одной из костей появится шестерка.

При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей, утеряна одна деталь, причём неизвестно какая. Наудачу извлеченная (после перевозки) из ящика деталь оказалась стандартной. Найти вероятность того, что была утеряна: а) стандартная деталь; б) нестандартная деталь.

Задумано двузначное число. Найти вероятность того, что задуманным числом окажется: а) случайно названное двузначное число; б) случайно названное двузначное число, цифры которого различны.

Указать ошибку «решения» задачи: брошены две игральные кости; найти вероятность того, что сумма выпавших очков равна 3 (событие А).

Брошены две игральные кости. Найти вероятности следующих событий: а) сумма выпавших очков равна семи; б) сумма выпавших очков равна восьми, а разность четырем; в) сумма выпавших очков равна восьми, если известно, что их разность равна четырем; г) сумма выпавших очков равна пяти, а произведение – четырем.

Куб, все грани которого окрашены, распилен на тысячу кубиков одинакового размера, которые затем тщательно перемешаны. Найти вероятность того, что наудачу извлеченный кубик имеет окрашенных граней: а) одну; б) две; в) три.

Монета брошена два раза. Найти вероятность того, что хотя бы один раз появится «герб».

В коробке 6 одинаковых занумерованных кубиков. Наудачу по одному извлекают все кубики. Найти вероятность того, что номера извлеченных кубиков появятся в возрастающем порядке.

Найти вероятность того, что при бросании трёх игральных костей шестерка выпадет на одной (безразлично какой) кости, если на гранях двух других костей выпадут числа очков, не совпадающих между собой (и не равные шести).

В пачке 20 перфокарт, помеченных номерами 101, 102,…, 120 и произвольно расположенных. Перфокарторщица наудачу извлекает две карты. Найти вероятность того, что извлечены карты с номерами 101 и 120.

В ящике 10 одинаковых деталей, помеченных номерами 1, 2,…, 10. Наудачу извлечены шесть деталей. Найти вероятность того, что среди извлеченных деталей окажутся: а) деталь №1; б) детали №1 и №2.

В ящике имеется 15 деталей, среди которых 10 окрашенных. Сборщик наудачу извлекает три детали. Найти вероятность того, что извлеченные детали окажутся окрашенными.

В конверте среди 100 фотокарточек находится одна разыскиваемая. Из конверта наудачу извлечены 10 карточек. Найти вероятность того, что среди них окажется нужная.

В ящике 100 деталей, из них 10 бракованных. Наудачу извлечены четыре детали. Найти вероятность того, что среди извлеченных деталей: а) нет бракованных; б) нет годных.

Устройство состоит из пяти элементов, из которых два изношены. При включении устройства включаются случайным образом два элемента. Найти вероятность того, что включенными окажутся не изношенные элементы.

Набирая номер телефона, абонент забыл последние три цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

В партии из N деталей имеется n стандартных. Наудачу отобраны m деталей. Найти вероятность того, что среди отобранных деталей ровно k стандартных.

В цехе работают шесть мужчин и четыре женщины. По табельным номерам наудачу отобраны семь человек. Найти вероятность того, что среди отобранных лиц окажутся три женщины.

На складе имеется 15 кинескопов, причем 10 из них изготовлены Львовским заводом. Найти вероятность того, что среди пяти взятых наудачу кинескопов окажутся три кинескопа Львовского завода.

В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что среди отобранных студентов пять отличников.

В коробке пять одинаковых изделий, причем три из них окрашены. Наудачу извлечены два изделия. Найти вероятность того, что среди двух извлеченных изделий окажутся: а) одно окрашенное изделие; б) два окрашенных изделия; в) хотя бы одно окрашенное изделие.

В «секретном» замке на общей оси четыре диска, каждый из которых разделен на пять секторов, на которых написаны различные цифры. Замок открывается только в том случае, если диски установлены так, что цифры на них составляют определенное четырехзначное число. Найти вероятность того, что при произвольной установке дисков замок будет открыт.

Отдел технического контроля обнаружил пять бракованных книг в партии из случайно отобранных 100 книг. Найти относительную частоту появления бракованных книг.

По цели произведено 20 выстрелов, причем зарегистрировано 18 попаданий. Найти относительную частоту попаданий в цель.

При испытании партии приборов относительная частота годных приборов оказалась равной 0,9. Найти число годных приборов, если всего было проверено 200 приборов.

На отрезке L длины 20см помещен меньший отрезок l длины 10см. Найти вероятность того, что точка, наудачу поставленная на больший отрезок, попадет также и на меньший отрезок. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.

На отрезок ОА длины L числовой оси Ох наудачу поставлена точка В(х). Найти вероятность того, что меньший из отрезков ОВ и ВА имеет длину, большую, чем . Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.

В круг радиуса R помещен меньший круг радиуса r. Найти вероятность того, что точка, наудачу брошенная в большой круг, попадет также и в малый круг. Предполагается, что вероятность попадания точки в круг пропорциональна площади круга и не зависит от его расположения.

Плоскость разграфлена параллельными прямыми, находящимися друг от друга на расстоянии . На плоскость наудачу брошена монета радиуса r<а. Найти вероятность того, что монета не пересечет ни одной из прямых.

На плоскость с нанесенной сеткой квадратов со стороной a наудачу брошена монета радиуса r<a/2. Найти вероятность того, что монета не пересечет ни одной из сторон квадрата. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади фигуры и не зависит от её раположения.

На плоскость, разграфленную параллельными прямыми, отстоящими друг от друга на расстоянии 6см, наудачу брошен круг радиуса 1см. Найти вероятность того, что круг не пересечет ни одной из прямых. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения.

На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения. 

Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг: а) квадрата; б) правильного треугольника. Предполагается, что вероятность попадания точки в часть круга пропорциональна площади этой части и не зависит от ее расположения относительно круга.

Быстро вращающийся диск разделен на четное число равных секторов, попеременно окрашенных в белый и черный цвет. По диску произведен выстрел. Найти вероятность того, что пуля попадет в один из белых секторов. Предполагается, что вероятность попадания пули в плоскую фигуру пропорциональна площади этой фигуры.

На отрезке ОА длины L числовой оси Ох наудачу поставлены две точки В(х) и С(у). Найти вероятность того, что длина отрезка ВС меньше расстояния от точки О до ближайшей к ней точке. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси.

Главная » Математика » Руководство к решению задач по теории вероятностей и математической статистике. Гмурман В. Е.

Руководство к решению задач по теории вероятностей и математической статистике. Гмурман В. Е.

В пособии ( 8-е изд. — 2003г.) приведены необходимые теоретические сведения и формулы, даны решения типовых задач, помещены задачи для самостоятельного решения, сопровождающиеся ответами и указаниями. Большое внимание уделено методам статистической обработки экспериментальных данных.

  • Рубрика: Математика / Студентам Математика Студентам Математика
  • Автор: Гмурман В. Е.
  • Год: 2004
  • Язык учебника: Русский
  • Формат: PDF
  • Страниц: 404

Понравилась статья? Поделить с друзьями:

А вот и еще наши интересные статьи:

  • Инструкция по сборке конструктора майнкрафт my world
  • Браславский ровд руководство
  • Canon eos 600d инструкция на русском скачать бесплатно
  • Как зайти в фрмр через госуслуги пошаговая инструкция
  • Sml 292 hd premium инструкция по применению

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии