Руководство мвф по статистике государственных финансов

1. Government finance statistics manual 2014. Washington D.C.: International Monetary Fund, 2014.

2. Система национальных счетов 2008. Нью-Йорк: Европейская комиссия, МВФ, ОЭСР, ООН, Всемирный банк. 2012.

3. Основы международной статистики: Учебник. Под общ. ред. Ю.Н. Иванова. М.: Инфра-М, 2010.

4. Government finance statistics manual 2001. Washington D.C.: International Monetary Fund, 2001.

5. Основы экономической статистики: Учебник. Под ред. Ю.Н. Иванова. М.: Инфра-М, 2007.

6. Ruggles N., Ruggles R. National Accounting and economic policy. Edward Elgar Publishing, 1999.

Стандарты Статистики государственных финансов

Автор:
Министерство
финансов РФ
. 09 мая 2009 в 20:27

Основным
методологическим документом в области
стандартов формирования статистических
данных является «Руководство по
статистике государственных финансов»,
разработанное Международным валютным
фондом (МВФ). Действующая редакция
Руководства была опубликована в 2001 г.

Стандарты
СГФ гармонизированы со статистическими
стандартами Системы национальных счетов
(СНС, 1993), в которой формируются данные
макроэкономической статистики. СГФ
является специализированной системой
макроэкономической статистики и
предназначена для описания той части
национальной экономики, которая связана
с деятельностью сектора государственного
управления и государственного сектора.
Кроме того, СГФ гармонизована со
статистикой платежного баланса,
денежно-кредитной и финансовой
статистикой, что обеспечивает возможность
использования данных СГФ в сочетании
с данными других статистических систем.

В
рамках СГФ определяются экономические
и статистические понятия, правила учета
и классификации, рекомендуемые для
систематизации сбора данных об операциях
сектора государственного управления
и государственного сектора.

Информационную
основу данных СГФ в значительной мере
составляют данные бухгалтерского учета.
Однако, несмотря на использование
стандартных терминов бухгалтерского
учета для описания системы СГФ, она
является системой статистической
отчетности. Существует ряд важных
аспектов, по которым система СГФ
отличается от системы финансовой
отчетности, например, в части отражения
переоценки активов, корректировок
прошлых лет, консолидации информации.
Кроме того, в стандартах СГФ большое
внимание уделяется классификации
операций.

Одним
из основных понятий, используемых в
СГФ, является понятие институциональной
единицы.

Институциональной
единицей
является хозяйствующая
единица, способная владеть активами и
принимать обязательства от своего
собственного имени.

В
соответствии с Руководством по СГФ, все
отражаемые и классифицируемые в системе
СГФ данные представляют собой либо
потоки, либо запасы.

Потоки
отражают создание, преобразование,
обмен, передачу или исчезновение
экономической стоимости, что оказывает
влияние на экономическое положение
институциональной единицы.

Запасы —
это имеющиеся у институциональной
единицы на определенный момент времени
активы и обязательства, а также
соответствующая чистая стоимость
активов этой единицы, которая равна
разности между общей суммой активов и
общей суммой обязательств.

Все
изменения в запасах могут быть полностью
объяснены потоками, т. е. для каждого
вида запасов справедливо следующее
соотношение:

S1
= S0 + F,

где:

S0
и S1 — стоимость конкретного
вида запаса на начало и конец отчетного
периода соответственно;

F —
чистая стоимость всех потоков, которые
оказали влияние на данный конкретный
запас в течение указанного отчетного
периода.

Все
потоки классифицируются либо как
операции, либо как другие экономические
потоки.

Операции
представляют собой взаимодействие
между двумя институциональными единицами
на основе взаимного соглашения (например,
продажа или приобретение товаров и
услуг, оплата труда, получение субсидий
из бюджета вышестоящего уровня) или
действие, совершаемое внутри отдельной
институциональной единицы.

Другие
экономические потоки
представляют
собой изменение в объеме или стоимости
актива либо обязательства, которое не
является результатом операции. Примерами
других экономических потоков являются
разрушение актива в результате
землетрясения, истечение срока действия
патента, изменение классификации актива
или обязательства.

Одним
из методологических приемов СГФ является
использование концепции представления
показателей на «чистой» основе, суть
которой заключается в том, что при
формировании показателей происходит
как бы «взаимозачет» определенных
операций или балансовых статей.

Одним
из важнейших показателей, формируемых
в системе СГФ, является показатель
чистой стоимости активов, который
представляет собой разницу между
совокупными активами и обязательствами
и характеризует конечный результат
деятельности органов государственной
власти и местного самоуправления.

В
системе СГФ все происходящие экономические
события рассматриваются с точки зрения
того, какое воздействие они оказывают
на чистую стоимость активов сектора
государственного управления региона
или муниципалитета.

Концепция
чистой стоимости активов меняет само
определение доходов и расходов. К доходам
или расходам относятся только те
операции, которые оказывают непосредственное
воздействие на чистую стоимость активов.

Доходы
в СГФ определяются как операции,
которые приводят к увеличению чистой
стоимости активов. Если продажа
нефинансового актива осуществляется
по балансовой стоимости, то величина
чистой стоимости активов не меняется,
следовательно, указанная продажа не
является доходом. Результатом такой
операции является лишь изменение
структуры баланса активов и пассивов
за счет обмена одного актива (нефинансового
актива) на другой актив (финансовый
актив). В то же время, если продажа
осуществляется по рыночной стоимости,
превышающей балансовую стоимость
нефинансового актива, то разница между
рыночной и балансовой стоимостью
признается доходом.

Расходы
в СГФ определяются как операции,
приводящие к уменьшению чистой стоимости
активов. Таким образом, приобретение
нефинансового актива не является
расходом, поскольку оно не влияет на
чистую стоимость активов. Результатом
такой операции является изменение
структуры баланса активов и пассивов
вследствие обмена одного актива
(приобретенного нефинансового актива)
на другой актив или обязательство
(выплаченные денежные средства либо
обязательство в виде кредиторской
задолженности). Расходы классифицируются
как по экономической классификации,
так и по Классификации функций органов
государственного управления (КФОГУ).

Для
потоков и запасов, которые отражаются
в системе СГФ, используются следующие
виды классификаций:

1. 
Классификация доходов.

2. 
Функциональная классификация расходов,
которая также может применяться к
операциям с нефинансовыми активами.

3. 
Экономическая классификация расходов.

4. 
Классификация потоков и запасов активов
и обязательств.

5. 
Классификация операций с финансовыми
активами и обязательствами.

Методом
учета
, который используется для
отражения потоков в системе СГФ, является
метод начисления, означающий отражение
потоков в учете на момент создания,
преобразования, обмена, передачи или
исчезновения экономической стоимости.

Стоимостная
оценка
потоков, а также активов,
обязательств и чистой стоимости активов
в системе СГФ производится по текущим
рыночным ценам, но при этом предусматривается
также отражение номинальной стоимости
долговых ценных бумаг в справочных
статьях.

Для
идентификации различных видов операций,
других экономических потоков и запасов
активов и обязательств в СГФ используется
система классификационных кодов. Таким
образом, классификации СГФ позволяют
четко соотнести все изменения в запасах
с соответствующими потоками.

Стандарты
СГФ предусматривают следующий набор
отчетов:

  • Баланс активов и пассивов.

  • Отчет об операциях органов государственного
    управления.

  • Отчет о других экономических потоках.

  • Отчет об источниках и использовании
    денежных средств.

Учитывая
большой опыт МВФ по анализу государственных
финансов разных стран и общепризнанность
в мире стандартов СГФ (так, все страны,
представляющие финансовую информацию
в МВФ, делают это в соответствии со
стандартами СГФ), бюджетная отчетность
в России стала ориентироваться также
на эти стандарты.

В
российскую систему бюджетного учета и
отчетности по этой причине были внесены
следующие изменения:

  • Отражение операций осуществляется в
    соответствии с их экономическим
    содержанием.

  • Формируется информация обо всех
    государственных активах и пассивах и
    об изменениях, которые с ними происходят.

  • Отражается взаимосвязь потоков
    (изменений в течение отчетного периода)
    и запасов (остатков на начало и конец
    отчетного периода).

  • Присутствует взаимосвязь плана счетов
    и бюджетной классификации.

  • Происходит систематизация данных,
    необходимых для проведения
    макроэкономического анализа и выработки
    налогово-бюджетной политики.

  • Отчетность сектора государственного
    управления гармонизирована с отчетностью
    других секторов экономики.

Есть
возможность формировать отчетность,
сопоставимую на международном уровне.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Specifically, the GFS contains annual statistics on government revenue, expense, transactions in assets and liabilities, and stocks of assets and liabilities.

From: Researching Developing Countries, 2016

Governance

Forrest D. Wright, in Researching Developing Countries, 2016

International Monetary Fund

Government Finance Statistics

http://www.imf.org/external/data.htm

Topics Covered: Government spending; revenue; expenses; transactions; assets and liabilities

Methodology and Scope

The IMF provides government finance statistics for 179 countries in their Government Finance Statistics (GFS) database. Specifically, the GFS contains annual statistics on government revenue, expense, transactions in assets and liabilities, and stocks of assets and liabilities. The data is obtained from member countries who report their financial figures to the IMF annually.

User Guide

Users can view the key financial indicators for three levels of government within the GFS database. These levels include the Budgetary Central Government (the single unit of the central government that encompasses the fundamental activities of the national executive, legislative, and judiciary powers); Central Government (the single unit of the central government in addition to nonprofit institutions controlled by the central government); and the General Government (all units within a country fulfilling a government function). The key indicators at each level include the overall budget balance as a percentage of GDP, and the revenue and expenditure figures as a percentage of GDP from 2003 to the present. Users can download this data in MDB or CSV format.

Users looking for more specific data can select the “Query” tab at the top of the page. This allows users to view time-series data for each country according to hundreds of available indicators. These indicators cover the areas of government revenue, expense, transactions in assets and liabilities, and stocks of assets and liabilities mentioned above. Users can download this data in MDB or CSV format.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780081001561000031

Handbook of Regional and Urban Economics

Marius Brülhart, … Kurt Schmidheiny, in Handbook of Regional and Urban Economics, 2015

17.2.5 Summary of institutional facts

Our analysis of data from the IMF (GFS), the OECD (Regional Statistics), Eurostat (Urban Audit), and the US Census (IndFin, Population Estimates Program) can be summarized in the following four stylized facts:

Result 17.2.1

With the exception of some Mexican cities, all OECD cities with more than 500,000 inhabitants are fragmented into multiple local governments. On average, there are 74 local governments per functional urban area. The degree of urban jurisdictional fragmentation differs substantially both within and across countries.

Result 17.2.2

All of our 40 sample countries collect some tax revenue at the local (municipal) level. On average, 10.0% of the countries’ total tax revenue is collected locally; 6 countries collect more than 20% locally, and 16 countries collect more than 10% locally. Considering local tax autonomy substantially reduces the effective degree of tax decentralization for some countries. The degree of local fiscal decentralization differs substantially both within and across countries.

Result 17.2.3

We identify eight countries with conditions for intraurban tax competition at least as strong as those in the United States.

Result 17.2.4

Most OECD cities are characterized by a central municipality that strongly dominates the city in terms of population, beyond what would be predicted by Zipf’s law.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B978044459531700017X

Determinants of the Public Budget Balance: The Role of Official Capital Flows

Andreas Steiner, in Global Imbalances, Financial Crises, and Central Bank Policies, 2016

Appendix 4.A List of variables and data sources

Variable Source Definition
Public (government) budget balance (relative to GDP) WEO, GFS, WDI; complemented by Bordo et al. (2001) Data equals the variable general government net lending/borrowing provided in the WEO database, which is calculated as revenue minus total expenditure. Missing values are filled – where possible – by the variable government cash surplus/deficit of the GFS database (years from 1990 onward) and overall deficit/surplus of consolidated central government from the historical GFS database (for years prior to 1989). Data are converted to dollars by end of period exchange rates and divided by current GDP.
Inflation WDI Inflation is measured as the growth rate of the GDP implicit deflator (annual %)
Bordo et al. (2001) Change in CPI
Real GDP WDI GDP is measured as gross domestic product in constant international dollars with the year 2005 as base. An international dollar has the same purchasing power over GDP as the US dollar has in the United States.
Comin and Hobijn (2009)
Relative dependency ratio (old) WDI; Mitchell (2007); for US: U.S. Census Bureau (2003) Ratio of old (65+ years) to working (15–65 years) population measured as deviation from world average
Wars Dummy that takes the value one between 1914 and 1919 and 1940 and 1944; 0 otherwise.
Interest rate Armingeon et al. (2011); Bordo et al. (2001) Long term (in most cases 10 years) interest rate on government bonds. Missings filled with data on government bonds as provided in the IFS if at least 10 data points could be added for a given country. Historical data (based on Bordo) use long-term interest rates, mostly for government securities or high grad bonds.
Policy rate Center for Financial Stability, ECB Interest rate set by the central bank
Democracy Marshall and Jaggers (2011) Democracy is measured by a score which combines the information contained in indicators of democracy and autocracy (POLITY2 variable). It ranges from +10 (strongly democratic) to −10 (strongly autocratic).
Financial deepening WDI Money and quasi-money (M2) as a percentage of GDP. Complemented by data for the UK based on Bank of England (2012), Series LPMVWYH.
Bordo et al. (2001) Money as a percentage of GDP, where money is M1, M2 or M3 depending on the country and data availability.
Unemployment rate WDI Percentage of unemployed out of total labor force
External shock WDI, own calculation Growth rate of terms of trade multiplied by trade openness. Trade openness is defined as the ratio of exports plus imports over GDP.
Civil liberties Freedom House Index of civil liberties, which is based on ratings with respect to the freedom of expression, right of assembly, rule of law and individual rights. The ratings lie between 1 and 7 with 1 representing the highest degree of freedom.
Military spending WDI Deviation of military expenditure (expressed as % of GDP) from its country-specific mean over the period under consideration
Financial center, dummy Own calculations based on Lane and Milesi-Ferretti (2007) and update, and GFCI The dummy takes on the value one in a country year where the country is identified as a financial center. A financial center is defined as having both a ratio of foreign assets to GDP and of foreign liabilities to GDP that exceed the mean plus one standard deviation of the respective variables in a given year where mean and standard deviation are calculated over the whole sample. Based on information provided by the Global Financial Centres index the following countries are labeled financial centers over the whole period: Hong Kong, Japan, Switzerland, the United Kingdom and the United States.
Market capitalization Standard & Poor’s and WDI Market capitalization is the market value (share price times the number of shares outstanding) of domestic companies listed on the country’s stock exchanges. Investment companies, mutual funds or other collective investment vehicles are not included.
Net change in Treasury bonds held by foreign official institutions Federal Reserve Difference of Treasury securities held by non-US official institutions (Flow of Funds, Table L.107, line 11) between two consecutive years
World foreign exchange reserves IFS, Lindert (1969) Central banks’ reserves of foreign exchange, converted in US$
World official gold reserves IFS, Lindert (1969) Total amount of gold at historical prices (35 US$ per ounce) held at central banks

Notes: Since the data set combines data from various sources, in some cases the table provides two definitions for the same variable: The first refers to more recent data running until 2009 and the second definition corresponds to the historical data.

Sources: GFCI: Global Financial Centres Index provided by Z/Yen; GFS: Government Finance Statistics (online and historical database); IFS: International Financial Statistics; WEO: World Economic Outlook Database; WDI: World Development Indicators.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128104026000049

Global Demographic Trends

O. Attanasio, … G. Weber, in Handbook of the Economics of Population Aging, 2016

7.6 Government Policy Parameters

We obtain the ratio of the government debt Btr as a fraction of GDP from the International Monetary Fund (IMF)’s World Economic Outlook Database (WEO, 2013). We use the net debt variable that represents the gross debt net of financial assets. The average over the period 1990–2010 was 48%, 37%, and 51% in High-, Middle-, and Low-Income regions. For China, only gross debt data is available, which is 14% of GDP. Since we do not have the data for the government’s financial assets, we assume a net debt of 10% of GDP in the baseline calibration.

The total government expenditures as a fraction of GDP are obtained from the WEO for the period 1980–2010, and from the IMF Government Finance Statistics (GFS, 2014) and the China Statistical Yearbook of the National Bureau of Statistics of China (n.d.) for earlier years (1970–1980). The average over 1970–2010 was 36%, 23%, 30%, and 22% of GDP in each of the four regions, respectively. Since these figures represent general public expenditures, which include spendings for social security and interest payment, we compute the ratio of the government expenditures Gtr to GDP so that the total expenditures match the ratios reported above. The ratios of Gtr to GDP are 29.2%, 22.5%, 28.8% and 21.4% for each of the four regions.m

Based on the study of OECD, the replacement rate of pensions to the average earnings is set at κtH=58% in High-Income region.n Unfortunately, similar systematic studies on the replacement rates for other regions are not available. The average replacement rate is likely to be much lower than in High-Income region due to two factors. First, the disproportionate role of self-employment and informal production means that a vast part of the working population is not covered by a public pension system. Second, the involvement of governments in the pension sphere is limited: in Asia, only Korea and Taiwan operate a defined benefits PAYG scheme with universal coverage; Latin America is the region with the largest number of pension systems already reformed toward substantial privatization (see Mohan, 2004, for the Asian experience; see Corbo, 2004, for the Latin American experience). We set the replacement rate of the three regions at κtr=10% in the first steady state, the value used in Attanasio et al. (2006).o

For tax rates of each region, we use various data sources for the period of 2000–2010 and estimate effective tax rates following the method of Mendoza et al. (1994). We use the OECD Revenue Statistics (2013a) database for tax revenues, in particular for High-Income and Latin American countries, integrated with consistent data from IMF GFS for Low and other Middle-Income countries. Detailed national accounts data on households, enterprizes, and government are taken from the OECD National Accounts Statistics (2013b) and the UN National Accounts Statistics (2013b) databases. Equivalent data for China are not available and we use the estimates of Cui et al. (2011) for the effective tax rates of the country. Capital income tax rates τar are 35.7% for High-Income region, 15.5% for Middle-Income region, 13.5% for Low-Income region and 25.7% for China. Consumption tax rates τcr are set at 9.7%, 16.0%, 6.3%, and 7.7%, respectively. The labor income tax τw,tr in each region is determined in the equilibrium path of the model to satisfy the government budget constraint, as presented and discussed in the next section.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/S2212007616300177

The PPP Decision—Affordability, Budgeting and Reporting

E.R. Yescombe, Edward Farquharson, in Public-Private Partnerships for Infrastructure (Second Edition), 2018

§9.4.4 Statistical Reporting

The basic standards for macroeconomic statistical reporting are set out in the System of National Accounts (SNA) (European Commission et al. 2009) under the joint responsibility of the United Nations, the IMF and a number of other multilateral bodies. For non-EU governments, the key source of guidance for the format of statistical reporting, based on the SNA, is the IMF’s Government Finance Statistics (GFS) Manual (IMF 2014). This is aimed at ‘helping national authorities to strengthen their capacity to formulate fiscal policy and monitor fiscal developments’.

There is no worldwide agreement yet among statisticians on the treatment of PPPs and thus the SNA, and the GFS Manual based on this, are currently non-prescriptive. The IMF’s GFS Manual generally takes a risk/reward approach to determining economic ownership but recognises that each case needs to be considered on its merits as the relative importance of each different risk/reward factor will have a bearing on the overall determination of economic ownership and therefore balance-sheet treatment. The factors involved are closely related to the conditions prescribed by IPSAS 32 for financial accounting. So, GFS rules and IPSAS 32 should usually lead to the same result.

If limits (e.g. imposed by the IMF) exist on levels of public deficit and public debt and a country is close to these limits, how a PPP project is classified for statistical-reporting purposes is particularly important. There may be an incentive to ‘financially engineer’ a structure to get the project classified as off balance sheet so that it does not contribute to the reported level of public debt. If risk transfer is the deciding factor, this may lead to paying the project company for a risk that it is not well-equipped to assume, resulting in poor VfM. It also puts pressure on the process of measuring risk and the integrity of the VfM assessment by creating an incentive to ensure the assessment ‘proves’ VfM, when this may not be the case.

However, the bias to use PPPs by the prospect of off-balance-sheet treatment can sometimes be overstated. A study of the impact of the requirement that all French local-government PPPs should be classified as on-balance sheet as of 2010 (Buso et al. 2016) showed that this did not lead to materially fewer PPPs. In other active PPP markets, such as Canada or Germany, PPP programmes have developed even though almost all projects have always been and continue to be classified as on the public-sector balance sheet.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780081007662000097

Federalism: Local, State, Federal, and International Data Sources

Bertram Johnson, in Encyclopedia of Social Measurement, 2005

International Data Sources

International sources of data on federalism are more widely scattered than are data on the United States, so it is difficult to evaluate all of them here. As in the United States, in general, data on fiscal federalism is easier to come by than are data on electoral behavior or public opinion.

Fiscal Federalism

Studies of fiscal federalism in individual nations may rely on data from national finance or statistics agencies, or on data collected or analyzed by several private research organizations, such as Argentina’s Fundación de Investigaciones Económicas Latinoamericanas (www.fiel.org), or the Center for Monitoring Indian Economy (www.cmie.com). Many single-nation and multinational analyses of fiscal federalism must rely on World Bank and International Monetary Fund figures, however. The World Bank has published studies of fiscal federalism in individual countries, in addition to managing a significant educational and research program on fiscal decentralization. The International Monetary Fund (IMF) maintains its comprehensive Government Finance Statistics Yearbook, which includes annual figures on region and local government taxes and spending; in 1997, IMF published Fiscal Federalism in Theory and Practice, which contains information on intergovernmental grants and borrowing.

Politics and Elections

Basic data on politics and elections in federal states are available from state agencies, or from a comprehensive reference such as the Europa World Yearbook. A newer arrival, the Forum of Federations, a nongovernmental organization founded in 1998 and based in Ottawa, Canada, shows promise of being an excellent resource on the political aspects of federalism (www.forumoffederations.org). In addition to serving as a depository for scholarly articles, opinion pieces, and other materials on federal states, the fund’s web site includes links to affiliates in a number of countries.

Public Opinion and Culture

Only in the past several decades have public opinion surveys been widely used in many federal countries, and, as in the United States, when these surveys have been conducted, they are rarely designed to enable studies of within-country regional variation. There are several notable exceptions, however, which suggest that the amount of data in this area will steadily improve. The unprecedented international World Values Survey, which measures basic values and belief systems, completed a fourth wave of research in 2001. Components of this study allow local comparisons, such as the separate surveys from four regions in Spain and from the Moscow region in Russia, in addition to the standard national surveys for those countries.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B0123693985004886

Handbook of Computable General Equilibrium Modeling SET, Vols. 1A and 1B

Hans Lofgren, … Carolina Diaz-Bonilla, in Handbook of Computable General Equilibrium Modeling, 2013

4.7.2.2 Database development

MAMS for Yemen was calibrated to a 2004 SAM and other data, developed following the procedures described in Section 4.5. The main source of information for the construction of the Yemeni SAM was the supply and in use tables for the same year. In addition, information from the Balance of Payments was the most important input to build the external accounts of the SAM. For the government accounts, data for 2004 from the 2008 Bulletin of Government Finance Statistics was used. In order to complete the SAM, data computed from the 2005 Household Budget Survey was also used. Like other MAMS SAMs, the Yemeni SAM offers a relatively detailed treatment of investment and its financing (cf. Section 4.5). Table 4.19 shows the accounts in the 2004 Yemeni SAM, which determine the size (i.e. disaggregation) of the model. The government is disaggregated into eight activities: four cycles of education (basic grades 1–6, basic grades 7–9, secondary and tertiary cycles), health, water and sanitation, other public infrastructure and other government services.79 In the following, the basic grades 1–6 are referred to as primary education (following international standards for the length of primary education). Owing to the focus of MAMS on MDGs, in addition to other private services, the private service sector is disaggregated into four education activities (with the same cycles as in government education) and a private health activity.80 The rest of the economic activities (agriculture and industry) are disaggregated into the 12 sectors shown in Table 4.19.

Table 4.19. Accounts in the Yemen 2004 SAM

Sectors (25) Tax accounts (4)
Private (17) Commodity taxes
 Agriculture Factor taxes
 Crude oil, gas and other mining Direct taxes
 Food and beverages Import taxes
 Textiles Institutions (3)
 Wood, paper and press Households
 Liquid petroleum products Government
 Chemical products Rest of the world
 Non-metal industry Interest payments (3)
 Metal and equipment Domestic interest payments
 Other manufactures Foreign interest payments
 Construction Capital accounts (3)
 Other services Households
 Health private Government
 Basic education grade 1–6 Rest of the world
 Basic education grade 7–9 Investment accounts (9)
 Secondary education Private (2)
 Tertiary education  Gross capital formation
Government (8)  Stock changes
 Water and sanitation Government (8)
 Other infrastructure  Water and sanitation
 Health government  Other infrastructure
 Basic education grade 1–6  Health government
 Basic education grade 7–9  Basic education grade 1–6
 Secondary education  Basic education grade 7–9
 Tertiary education  Secondary education
 Other government  Tertiary education
Factors of production (13)  Other government
Unskilled labor
Semi-skilled labor
Skilled labor
Private capital
Natural resource
Government capital (8)

Among the factors of production, there are three types of labor: those with less than completed secondary education (unskilled), with completed secondary education but not completed tertiary (semi-skilled) and with completed tertiary (skilled). Each of these labor types is therefore linked directly to an educational cycle. The growth in the labor force and changes in its composition will in part depend on the functioning of the education system in the model.81 The remaining factors include public capital stocks by government activity, a private capital stock and a natural resource used in oil and gas extraction.

The institutions include the government, a household (the private domestic institution, which represents both households and domestic enterprises) and the rest of the world. Each institution has its own capital account. Taxes have been disaggregated into direct, import and commodity taxes/subsidies. There is one private investment account and eight public investment accounts (one for each government sector). Lastly, the SAM includes accounts for domestic and foreign interest payments.

As explained in Section 4.5, apart from the SAM, the MAMS database includes data related to the different MDGs, the labor market and various elasticities. Most importantly, the first two data types include levels of service delivery required to meet the different MDGs, number of students at different educational cycles, student behavioral patterns in terms of promotion rates and other indicators and number of workers and initial unemployment rates by skill level (i.e. educational achievement). The elasticities include those in production, trade, consumption and in the different MDG functions. This implementation of MAMS covers MDG 2 (primary education), 4 (under-five mortality) and 7 (water and sanitation access).82 The elasticities for the MDG functions are informed by two studies done for Yemen by Sanchez and Sbrana (2009) and Sbrana (2009) for education and water and sanitation, respectively. However, rather than using the exact point estimates from the econometric partial equilibrium analysis, we use the relative importance of the determinants in choosing the (general equilibrium) elasticities. In addition, the MAMS elasticities were adjusted in order to generate plausible trends under baseline conditions – and this procedure was, in fact, entirely used to define plausible elasticity values for MDG 4 in view of a lack of empirical studies and data to better inform the definition of these elasticities. Reflecting these adjustments, Table 4.20 shows the determinants in the MAMS functions that define MDG outcomes and the corresponding elasticities used in the model.83

Table 4.20. Elasticities for the determinants of MDGs

MDG Per student or per capita service delivery Per capita household consumption Wage premium Public infrastructure Other MDGsa
Basic education (grades 1–6)
     First grade net intake rate 1.563 0.195 0.004 0.781 –0.031
     Promotion rate 0.466 0.039 0.001 0.155 –0.004
     Continuation rateb 0.733 0.105 0.001 0.105 –0.020
Under-5 mortality rate –0.865 –0.087 –0.087 –0.084
Access to safe water 0.261 0.010 0.010 –0.084
Access to basic sanitation 1.201 0.120 0.120 –0.105
a
Refers to MDG 4 for education and MDG 7w and 7s for health.
b
To grades 7–9 among students who were promoted from grade 6.

The determinants in the MDG functions include the provision of relevant services (in education, health and water and sanitation) and other indicators as per capita consumption and the size of the capital stock in public infrastructure, also allowing for the presence of synergies between MDGs, i.e. the fact that achievements in terms of one MDG can have an impact on other MDGs. For example, improvements in water and sanitation (i.e. MDG 7) will reduce under-5 mortality (MDG 4). In the cases of health and water and sanitation (i.e. MDG 4, 7w and 7s), service provision is expressed relative to the size of the population. For MDG 2, the treatment is slightly more complex. The arguments in Table 4.20 determine the shares of children that enter basic school (out of the cohort of 6-year olds) and successfully complete their current grade (among those enrolled in the first basic cycle). The shares that repeat their current grade or drop out from it are determined residually. The service level is measured per enrolled student – an indicator of educational quality. MDG 4 is included as a proxy for the health status of those enrolled. Wage incentives – an indicator of payoffs from continued education – are expressed as the ratio between the wages for labor at the next higher and the current levels of education.

For the secondary and tertiary cycles, the same set of arguments enter functions that determine the shares of enrolled students that pass as well as the shares of graduates from the previous cycle that enter the first grade of these two cycles. The only differences are that the arguments for services (per enrolled student) and wage incentives are redefined to be relevant to these higher cycles and that no continuation rate is defined for the tertiary cycle (as it is viewed as a terminal cycle).

MAMS typically focuses on the net (on-time) primary completion rate as its main MDG 2 indicator; the net enrolment rate, which is the official indicator, is a less informative measure of the extent to which the relevant age group is able to complete the six-year primary cycle.84 More specifically, in any year, the net completion rate is defined as the share of the students that would complete primary school on time if this year’s net intake and grade promotion rates were to prevail during the coming six years.85 In addition, MAMS reports other indicators related to the primary cycle, the gross enrollment rate and the gross completion rate; the latter is used by the World Bank as an alternative MDG 2 indicator.

Generally speaking, the functions for educational outcomes and the other (i.e. non-education) MDGs have all been calibrated to ensure that, under base-year conditions, base-year indicators are replicated and that, under a set of other conditions identified in the Yemen Needs Assessment Report (see MOPIC, 2005), the target is fully achieved. Specifically, the Yemen Needs Assessment Report provides estimates of government sectoral spending needs (current and capital) for the period 2006–2015, which are used to calibrate the logistic functions in the MDG module of MAMS.

Finally, the MAMS Poverty Module was calibrated under the assumption that the household income distribution follows a log-normal distribution (see Section 4.4). Specifically, a poverty rate of 42.4% for 2010 and a Gini coefficient of 0.411 were used (see Government of Yemen et al., 2007; MOPIC, 2011); these two pieces of information were used to estimate the shape of the log-normal distribution and the value of the poverty line. As explained, this approach assumes that the income distribution within the representative household does not change over time.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780444595683000043

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

Понравилась статья? Поделить с друзьями:

А вот и еще наши интересные статьи:

  • Ватти тихомирова руководство к практическим занятиям по генетике скачать
  • Инструкция по охране труда для водителя легкового автомобиля образец
  • Руководство финансово хозяйственной деятельностью предприятия это
  • Mileseey x5 лазерный дальномер инструкция на русском текст
  • Флексотер крем инструкция по применению взрослым

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии