Для управления электрическими схемами необходимы мощные элементы коммутации. Эти элементы должны отключать участки схем, включать их, производить переключения. Часто в качестве коммутационных устройств используют тиристоры.
Содержание
- 1 Для чего нужен тиристор, его устройство и принцип работы
- 2 Вольт-амперная характеристика
- 3 Основные характеристики тиристоров
- 4 Виды тиристоров, их отличия и схемы подключения
- 4.1 Динисторы
- 4.2 Тринисторы
- 4.3 Симисторы
- 4.4 Оптотиристоры
- 5 Где применяются тиристоры
Для чего нужен тиристор, его устройство и принцип работы
Тиристором называется полупроводниковый прибор, имеющий два состояния:
- открытое (пропускает ток в одном направлении);
- закрытое (не пропускает ток).
Состоит этот полупроводниковый прибор из 4 слоев (областей) полупроводника (в большинстве случаев – кремния) с различной проводимостью и имеет структуру p-n-p-n.
Такой тиристор называется динистором (диодный тиристор). Подобно диоду он имеет два вывода и отпирается напряжением определенного уровня, приложенным в прямом направлении к аноду и катоду.
Более распространен триодный тиристор – тринистор. Он имеет ту же структуру, но с дополнительным выводом – управляющим электродом (УЭ). Все операции с тринистором производятся посредством УЭ.
Также существуют тиристоры с двумя управляющими электродами, но они получили меньшее распространение.
Вольт-амперная характеристика
Принцип действия тиристора наглядно демонстрирует его ВАХ. Она, как и характеристика обычного диода, расположена в I и III квадрантах и состоит из положительной и отрицательной ветвей. Отрицательная ветвь также подобна диодной и содержит участок, при котором прибор заперт — от нуля до Uпробоя. При достижении порогового напряжения происходит лавинный пробой.
Положительная ветвь требует внимательного рассмотрения. Если приложить к тиристору прямое напряжение и начать его увеличивать, то ток будет расти медленно – сопротивление закрытого полупроводникового прибора высоко. Это красный участок графика. При достижении определенного уровня тиристор скачкообразно открывается, его сопротивление уменьшается, падение напряжения также уменьшается, ток растет – синий участок. Этот участок характеризуются отрицательным сопротивлением, но прибор ведет себя здесь неустойчиво, с выраженной тенденцией перехода в открытое состояние.
Далее тиристор выходит в режим обычного диода – зеленая ветвь графика. Так работает диодный тиристор, а способность открываться при достижении определенного уровня называется динисторным эффектом.
Этот свойство также присуще трехэлектродному тиристору, но он используется в таком режиме крайне редко. Более того, при разработке схем этой зоны ВАХ избегают. У тринистора есть управляющий электрод, и включение практически всегда производится с его помощью. Если подать на УЭ ток, то тиристор откроется раньше достижения порогового напряжения (красный пунктир на ВАХ). Чем больше ток, тем раньше отпирание. Если ток достигнет определенного уровня (Iуэ>0), то тиристор откроется при любом напряжении анод-катод и будет вести себя подобно обычному диоду, пока не создадутся условия для выключения.
Важно! Включить тринистор подачей тока на УЭ возможно только при приложенном прямом напряжении между катодом и анодом.
Выключить тиристор (диодный или триодный) сложнее. Для этого требуется, чтобы ток через прибор снизился до определенного уровня (почти до нуля). В цепях переменного тока тиристор может быть переведен в закрытое состояние после снятия управляющего воздействия естественным путем – при ближайшем переходе напряжения через ноль. На самом деле, запирание происходит раньше — когда при снижении напряжения ток снизится до порогового значения. Это зависит от величины нагрузки. В цепях постоянного тока приходится принимать более сложные решения. Например, запирать тиристор можно с помощью конденсатора, заряженного напряжением обратной полярности. При включении коммутационного устройства, он разряжается навстречу прямому току и компенсирует его до нуля.
Также существуют другие способы создания встречного тока, но их устройство еще сложнее. Например, использование колебательных контуров и т.п. Все это усложняет использование тринисторов и динисторов, поэтому относительно недавно были созданы управляемые тиристоры (их также называют двухоперационными). Их отличие в том, что отпирание и запирание осуществляется посредством воздействия на управляющий электрод. Это резко расширяет возможности применения данных полупроводниковых приборов.
Основные характеристики тиристоров
Так как тиристоры в открытом состоянии ведут себя подобно диодам, часть технических характеристик аналогична обычным приборам с p-n переходом:
- максимально допустимый ток;
- наибольшее прямое напряжение;
- наибольшее обратное напряжение;
- прямое падение напряжения;
- максимальная рассеиваемая мощность.
Но имеются и специфические параметры:
- время включения;
- время выключения;
- отпирающий ток управляющего электрода;
- напряжение включения;
- минимальный ток удержания;
- наибольшее допустимое нарастание тока в открытом состоянии;
- наибольшее допустимое нарастание напряжения в открытом состоянии.
Превышение двух последних параметром могут вызвать ложные срабатывания приборов. Также для тиристоров характерны и другие параметры, определяющие, например, частотные свойства устройства. Найти их можно в соответствующих справочниках.
Виды тиристоров, их отличия и схемы подключения
На основе двух рассмотренных типов производятся ещё несколько разновидностей тиристоров. Каждый из них имеет свою сферу использования.
Динисторы
Динистор включается в схему подобно обычному диоду последовательно с нагрузкой. Питание может быть постоянным или переменным.
В цепи переменного напряжения также работают симметричные динисторы (двунаправленные динисторы, диаки), представляющие собой два обычных прибора, включенных встречно. Они открываются от любой полуволны синусоидального напряжения. Вольт-амперная характеристика диака симметрична – обратная ветвь также расположена в III квадранте и зеркально повторяет прямую.
Тринисторы
Самый распространенный тип в данной категории полупроводниковых приборов. В профессиональной среде триодные тиристоры называют просто тиристорами, хотя принципиально это неверно. Включается в схему тринистор также подобно обычному диоду (в цепь постоянного или переменного напряжения). Отпирание происходит при подаче на УЭ положительного напряжения (совпадающего по знаку с напряжением анода при прямом включении). У двухоперационных приборов запирание осуществляется подачей на УЭ тока противоположного направления.
Симисторы
Наряду с симметричными динисторами, существуют и симметричные тринисторы (симисторы, триаки). Они представляют собой два тринистора с общим управлением, включенные встречно-параллельно и размещенные в одном корпусе. При необходимости триак можно заменить двумя отдельными приборами, подключив их по соответствующей схеме.
ВАХ симистора также симметрична относительно нуля.
Оптотиристоры
Существуют приборы, схожие по строению и принципу действия с обычными тиристорами, но отпирание которых происходит посредством света, падающего на открытую тиристорную структуру. Если в одном корпусе объединить такой ключ и светодиод, управляемый внешним источником сигнала, то получится устройство, называемое оптотиристором (тиристорным оптроном).
Оптотиристор имеет четыре вывода. Его силовой элемент включается последовательно с нагрузкой, на выводы светодиода подается управляющий сигнал.
Где применяются тиристоры
Каждый полупроводниковый прибор предназначен для решения определенных задач:
- Сфера применения динисторов невелика. Они используются в качестве формирователей импульсов для отпирания тринисторов посредством УЭ и в составе пускорегулирующей арматуры для люминесцентных ламп. Также этот прибор применяется в любительских разработках в схемах с нестандартным применением.
- Триодные тиристоры широко применяются в качестве электронных ключей для коммутации нагрузок, в схемах фазового регулирования напряжения. Раньше были широко распространены в инверторах (для преобразования постоянного напряжения в переменное), в частотных преобразователях (для регулировки частоты вращения асинхронных электродвигателей) и в схемах плавного пуска. Сейчас активно вытесняются из этой сферы мощными полевыми и IGBT-транзисторами.
- Симисторы применяются в качестве коммутационных элементов в цепях переменного тока. Ими удобно заменять обычные механические реле:
- нет механических контактов;
- повышенный ресурс;
- уменьшенные габариты;
- невысокая цена.
К минусам такого применения можно отнести проблему с высоким выделением тепла под нагрузкой.
- Оптотиристоры используются в качестве коммутационных ключей в цепях переменного или постоянного тока в схемах, где нужна гальваническая развязка между управляющим сигналом и силовой цепью.
Тиристоры помогают решить задачи бесконтактной коммутации нагрузок или участков схем. Успех принесет умелое использование преимуществ электронных приборов и обход имеющихся недостатков.
Тиристорные источники питания
Предназначены для преобразования промышленной электроэнергии переменного тока (380 В, 50 Гц) в постоянный, сглаженный ток со стабилизацией выходного напряжения, регулируемого в широком диапазоне значений. Отличительные особенности: Возможно использование источника питания в качестве: Предусмотрены: Обеспечивают: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Основные технические характеристики
|
Простой тиристорный регулятор напряжения своими руками
Тиристорный регулятор напряжения простая схема, принцип работы
Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.
Фазовое регулирование напряжения
Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.
Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.
Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.
На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.
Схема тиристорного регулятора напряжения
Таблица номиналов элементов
- C1 – 0,33мкФ напряжение не ниже 16В;
- R1, R2 – 10 кОм 2Вт;
- R3 – 100 Ом;
- R4 – переменный резистор 33 кОм;
- R5 – 3,3 кОм;
- R6 – 4,3 кОм;
- R7 – 4,7 кОм;
- VD1 .. VD4 – Д246А;
- VD5 – Д814Д;
- VS1 – КУ202Н;
- VT1 – КТ361B;
- VT2 – КТ315B.
Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.
В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.
Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.
В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.
Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.
27 thoughts on “ Тиристорный регулятор напряжения простая схема, принцип работы ”
Раз уж мы заговорили о электрических углах, то хочется уточнить: при задержке «а» до 1/2 полупериода (до 90 эл. градусов) напряжение на выходе регулятора будет равным практически максимальному, а уменьшаться начнет только при «а» > 1/2 (>90). На графике — красным по серому начертано! Половина полупериода — не половина напряжения.
У данной схемы один плюс — простота, но фаза на управляющих элементах может привести к непростым последствиям. Да и помехи наводящиеся в электросети тиристорной отсечкой немалые. Особенно при большой нагрузке, что ограничивает область применения данного устройства.
Я вижу только одно: регулировать нагревательные элементы и освещение в складских и подсобных помещениях.
На первом рисунке ошибка, 10 мс должно соответствовать — полупериоду, а 20 мс соответствует периоду сетевого напряжения.
Добавил, график регулировочной характеристики при работе на активную нагрузку.
Вы видимо пишите про регулировочную характеристику когда нагрузкой является выпрямитель с емкостным фильтром? Тогда да, конденсаторы будут заряжаться на максимуме напряжения и диапазон регулирования будет от 90 до 180 градусов.
подобные схемы собирал…все работают безупречно, только больше нравится на кт 117
Залежи советских радиодеталей есть далеко не у каждого. Почему бы не указать «буржуйские» аналоги старых отечественных полупроводниковых приборов (например, 10RIA40M для КУ202Н)?
Тиристор КУ202Н сейчас продают меньше чем за доллар (не знаю, производят ли или старые запасы распродают). А 10RIA40M дорогой, на алиэкспрессе его продают примерно за 15$ плюс доставка от 8$. 10RIA40M имеет смысл использовать только когда нужно отремонтировать устройство с КУ202Н, а КУ202Н не найти.
Для промышленного применения более удобны тиристоры в корпусах TO-220, TO-247.
Два года назад делал преобразователь на 8кВт, так тиристоры покупал по 2,5$ (в корпусе TO-247).
Это и имелось в виду, если ось напряжения (почему-то помечена Р) провести, как на 2-м графике, то станет яснее с градусами, периодами и полупериодами приведенными в описании. Осталось убрать знак переменного напряжения на выходе (оно уже выпрямлено мостом) и моя дотошность будет удовлетворена полностью.
КУ202Н продают сейчас на радиорынках действительно за копейки, причем в исполнении 2У202Н. Кто в теме, поймет, что это военное производство. Наверное распродаются складские НЗ, которым все сроки вышли.
На рынке, если брать с рук могут среди новых подложить и выпаянную деталь.
Быстро проверить тиристор, например КУ202Н можно простым стрелочным тестером, включенным на измерение сопротивлений по шкале в единицы ом.
Анод тиристора соединяем на плюс, катод на минус тестера, в исправном КУ202Н утечки быть не должно.
После замыкания управляющего электрода тиристора на анод стрелка омметра должна отклониться, и остаться в таком положении после размыкания.
В редких случаях такой метод не срабатывает, и тогда для проверки понадобится низковольтный блок питания, желательно регулируемый, лампочка от фонарика, и сопротивление.
Вначале устанавливаем напряжение блока питания и проверяем светится ли лампочка, затем последовательно с лампочкой, соблюдая полярность соединяем наш тиристор.
Лампочка должна загореться лишь после кратковременного замыкания анода тиристора с управляющим электродом через резистор.
При этом резистор нужно подбирать, исходя из номинального открывающего тока тиристора и напряжения питания.
Это самые простейшие методы, но возможно существуют и специальные приборы для проверки тиристоров и симисторов.
кратковременно проверку выдерживают без сопротивления
На выходе напряжение не выпрямлено мостом.Оно выпрямлено только для схемы управления.
На выходе переменка,мост выпрямляет только для схемы управления.
Я бы назвал не регулирование напряжения, а регулирование мощности. Это стандартная схема регулятора освещения, которую раньше собирали почти все. И про радиатор к тиристору загнули. В теории конечно можно, но в практике думаю тяжело обеспечить тепло обмен между радиатором и тиристором для обеспечения 10А.
А какие сложности с теплообменом у КУ202? Вкрутил торцевым болтом в радиатор и все! Если радиатор новый, точнее, резьба не разболтана, даже КТП мазать не надо. Площадь стандартного радиатора (иногда и в комплекте шли), как раз и расчитана на нагрузку 10 А. Никакой теории, сплошная практика. Единственно, что радиаторы должны были находится на открытом воздухе (по инструкции), а при таком подключении сети — чревато. Поэтому закрываем, но ставим кулер. Да, мостовые друг к другу не прислоняем.
А что мешает поставить тиристор на радиатор через слюдяную прокладку? Так в СССР делали часто. В те времена, когда кулер назывался ещё вентилятором, по русски. Конвенцию в корпусе создать то же не сложно, безо всяких кулеров.
Вполне согласен с регулированием отдаваемоей мощности в нагрузку. Тиристор, конечно, не нужно ставить в предельные режимы. А так, моя любимая схема. даже использовал успешно для регулировки в первичной обмотке трансформатора.
Подскажите, что за конденсатор С1 -330нФ?
Наверное правильнее будет написать C1 — 0,33мкФ, можно устанавлиявать керамический или пленочный на напряжение не меньше 16В.
Всем самого доброго! Сначала собирал без транзисторов схемы… Одно плохо — регулировочное сопротивление грелось и выгорал слой графитовой дорожки. Потом собрал эту схему на кт. Первая неудачно — вероятно из-за большого усиления самих транзисторов. Собрал на МП с усилением около 50. Заработала без проблем! Однако есть вопросы…
Я тоже собирал без транзисторов,но ничего не грелось.Это было два резистора и конденсатор,В последствии убрал и конденсатор.Фактически остался переменник между анодом и управляющим,ну и естественно мостик.Использовал для регулировки мощности паяльника,причем как на 220 вольт,так и на первичку трансформатора для паяльника на 12 вольт и все работало и не грелось.Сейчас до сих пор в кладовке лежит в исправном состоянии.У Вас возможно была утечка в конденсаторе между катодом и управляющим для схемы без транзисторов.
Собрал на МП с усилением около 50. Работает! Но стало больше вопросов…
Номиналы R4 и R5 явно перепутаны. Никто не собирал схему в железе?
Можно поконкретнее о диодном мосте. Как направлены диоды?
плюс на право ,минус на лево ))
График неправильный. При 90 градусах *мощность* будет половина. А напряжение будет в корень из двух меньше исходного. Типа от 220 останется 155, а не 110.
А заменить транзисторы на динистор DB3 (стоит 4 рубля) можно? Дайте схему пожалуйста
…а если его — регулировать обороты вентилятора?, (но там индуктивная нагрузка,…. это вопрос).
ЭТИ. ВСЕ. СХЕМЫ. К. СОЖАЛЕНЬЮ. НЕ. РЕГУЛИРУЮТ. **ОТ. НУЛЯ**. НЕ. ЗНАЮ—ПОЧЕМУ. ОБ. **ЭТОМ—-**НИ—СЛОВА*.
Самодельный регулятор напряжения на тиристоре — схема для изготовления
Из-за использования в повседневной жизни большого количества электрических приборов (микроволновок, электрочайников, компьютеров и т.д.) нередко возникает необходимость регулировки их мощностей. Для этого применяют регулятор напряжения на тиристоре. Оно имеет простую конструкцию, поэтому собрать его самостоятельно несложно.
- Нюансы в конструкции
- Область применения и цели использования
- Принцип действия
- Способы закрывания тиристора
- Простой регулятор напряжения
- Способы регулирования фазового напряжения в сети
- Схемы на тиристорах
Нюансы в конструкции
Регулятор напряжения на тиристоре
Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.
Регулятор состоит из трех компонентов:
- катод – проводник, подключаемый к отрицательному полюсу источника питания;
- анод – элемент, присоединяемый к положительному полюсу;
- управляемый электрод (модулятор), который полностью охватывает катод.
Регулятор функционирует при соблюдении нескольких условий:
- тиристор должен попадать в схему под общее напряжение;
- модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.
Тиристор не применяется в схемах с постоянным током, поскольку он закрывается, если нет напряжения в цепи. В то же время в приборах с переменным током регистр необходим. Это связано с тем, что в подобных схемах имеется возможность полностью закрыть полупроводниковый элемент. С этим справится любая полуволна, если возникнет такая потребность.
Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.
Область применения и цели использования
Применение тиристорного регулятора мощности
Используют тиристор во многих электроинструментах: строительных, столярных бытовых и прочих. Он играет в схемах роль ключа при коммутации токов, при этом работая от малых импульсов. Выключается только при нулевом уровне напряжении в цепи. К примеру, тиристор контролирует скорость работы ножей в блендере, регулирует быстроту нагнетания воздуха в фене, координирует мощность нагревательных элементов в приборах, а также выполняет другие не менее важные функции.
В схемах с высокоиндуктивной нагрузкой, где ток отстает от напряжения, тиристоры могут не закрываться полностью, что приведет к поломке оборудования. В строительных приборах (дрелях, шлифовальных машинах, болгарках и т.д.) тиристор переключается при нажатии кнопки, которая находится в общем с ним блоке. При этом происходят изменения в работе двигателя.
Тиристорный регулятор отлично работает в коллекторном двигателе, где есть щёточный узел. В асинхронных движках устройство менять обороты не сможет.
Принцип действия
Специфика работы прибора заключается в том, что напряжение в нем регулируется мощностью, в также электроперебоями в сети. Регулятор тока на тиристоре при этом пропускает его только в одном конкретном направлении. Если устройство не отключить, оно так и будет продолжать работать, пока его не выключат после определенных действий.
Изготавливая тиристорный регулятор напряжения своими руками, в конструкции следует предусмотреть достаточно свободного места для установки управляющей кнопки или рычага. При сборке по классической схеме имеет смысл использовать в конструкции специальный выключатель, который при изменении уровня напряжения светит разными цветами. Это обезопасит человека от возникновения неприятных ситуаций, поражений током.
Способы закрывания тиристора
Выключение тиристора путем изменения полярности напряжения между катодом и анодом
Подача импульса на управляющий электрод неспособна прекратить его работу или закрыть. Модулятор только включает тиристор. Прекращение действия последнего происходит только после того, как на ступени катод-анод прерывается подача тока.
Регулятор напряжения на тиристоре ку202н закрывается следующими способами:
- Отключить схему от блока питания (батарейки). Устройство при этом не заработает до тех пор, пока не будет нажата специальная кнопка.
- Размокнуть соединение анод-катод с помощью проволоки или пинцета. Через эти элементы идет все напряжение, поступая в тиристор. Если перемычку разомкнуть, уровень тока окажется нулевым и устройство выключится.
- Уменьшить напряжение до минимального.
Простой регулятор напряжения
Схема регулятора мощности для паяльника
Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:
- диод – 4 шт.;
- транзистор – 1 шт;
- конденсатор – 2 шт.;
- резистор – 2 шт.
Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.
Способы регулирования фазового напряжения в сети
Изменяют переменное электрическое напряжение при помощи таких электрических приборов, как: тиратрон, тиристор и прочие. При изменении угла этих структур на нагрузку подаются неполными полуволнами, а в результате регулируется действующее напряжение. Искажение вызывает возрастание тока и падение напряжения. Последнее меняет форму из синусоидальной в несинусоидальную.
Схемы на тиристорах
Система включится после того, как на конденсаторе соберется достаточно напряжения. При этом момент открытия контролируется при помощи резистора. На схеме он обозначен как R2. Чем медленнее заряжается конденсатор, тем больше сопротивления у этого элемента. Регулируется электроток через управляющий электрод.
Эта схема дает возможность контролировать полную мощность в устройстве, так как регулируются два полупериода. Это возможно благодаря установке в диодном мосте тиристора, который воздействует на одну из полуволн.
Регулятор напряжения, схема которого представлена выше, имеет упрощенную конструкцию. Контролируется здесь одна полуволна, в то время как другая без изменений проходит через VD1. Работает по аналогичному сценарию.
При работе с тиристором импульс на управляющий электрод следует подавать в определенный момент, чтобы срез фаз достиг требуемой величины. Нужно определять переход полуволны в нулевой уровень, иначе регулировка не будет эффективной.
Регулятор мощности тиристорный, напряжение и схемы своими руками
В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.
В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.
- Как совершает свою работу тиристор?
- Область использования тиристорных устройств
- Как работает такое устройство?
- Тиристорный регулятор напряжения своими руками
- Способы регулирования фазового напряжения в сети
- Схемы на тиристорах
Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.
Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.
Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.
Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.
Как совершает свою работу тиристор?
Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.
Тиристор обладает сразу тремя выводами тока:
- Катод.
- Анод.
- Управляемый электрод.
Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.
Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.
Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.
Область использования тиристорных устройств
В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.
Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?
Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.
Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.
Как работает такое устройство?
Описанные ниже характеристики будет соответствовать большинству схем.
Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
- Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.
При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.
Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).
В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.
Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.
Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.
Тиристорный регулятор напряжения своими руками
Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.
Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.
Способы регулирования фазового напряжения в сети
Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
- Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
- Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.
На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.
Схемы на тиристорах
Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.
Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.
- VD — КД209 (либо близкие по его общим характеристикам).
- R 1 — сопротивление с особым номиналом в 15 кОм.
- R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
- Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).
Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.
5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками
8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля
Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.
Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!
4 вопроса по теме регуляторов напряжения
- Для чего нужен регулятор:
а) Изменение напряжения на выходе из прибора.
б) Разрывание цепи электрического тока
- От чего зависит мощность регулятора:
а) От входного источника тока и от исполнительного органа
б) От размеров потребителя
- Основные детали прибора, собираемые своими руками:
а) Стабилитрон и диод
б) Симистор и тиристор
- Для чего нужны регуляторы 0-5 вольт:
а) Питать стабилизированным напряжением микросхемы
б) Ограничивать токопотребление электрических ламп
Ответы.
2 Самые распространенные схемы РН 0-220 вольт своими руками
Схема №1.
Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.
СНиП 3.05.06-85
Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.
Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.
Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.
Схема №2.
Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.
В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.
Как избежать 3 частых ошибок при работе с симистором.
- Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
- Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
- При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.
3 Основных момента при изготовлении мощного РН и тока своими руками
Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.
Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.
СНиП 3.05.06-85
Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.
2 основных принципа при изготовлении РН 0-5 вольт
- Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
- Питание микросхем производится только постоянным током.
Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.
Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:
- Первый вывод – входной сигнал.
- Второй вывод – выходной сигнал.
- Третий вывод – управляющий электрод.
Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.
СНиП 3.05.06-85
Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.
Регулятор напряжения 0 — 220в
Топ 4 стабилизирующие микросхемы 0-5 вольт:
- КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
- 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
- TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
- L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.
РН на 2 транзисторах
Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.
СНиП 3.05.06-85
Ответы на 4 самых частых вопроса по регуляторам:
- Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
- От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
- Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
- Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.
4 Схемы РН своими руками и схема подключения
Коротко рассмотрим каждую из схем, особенности, преимущества.
Схема 1.
Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.
СНиП 3.05.06-85
Схема 2.
Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.
СНиП 3.05.06-85
Схема 3.
Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.
СНиП 3.05.06-85
Схема 4.
Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.
СНиП 3.05.06-85
Китайский РН на 220 вольт
В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.
Название | Мощность | Напряжение стабилизации | Цена | Вес | Стоимость одного ватта |
Module ME | 4000 Вт | 0-220 В | 6.68$ | 167 г | 0.167$ |
SCR Регулятор | 10 000 Вт | 0-220 В | 12.42$ | 254 г | 0.124$ |
SCR Регулятор II | 5 000 Вт | 0-220 В | 9.76$ | 187 г | 0.195$ |
WayGat 4 | 4 000 Вт | 0-220 В | 4.68$ | 122 г | 0.097$ |
Cnikesin | 6 000 Вт | 0-220 В | 11.07$ | 155 г | 0.185$ |
Great Wall | 2 000 Вт | 0-220 В | 1.59$ | 87 г | 0.080$ |
Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.
Трехфазный и однофазный тиристорный регулятор мощности — принцип работы, схемы
Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях, электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок). В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.
Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).
Принцип работы фазового регулирования
Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.
Минимальная мощность
На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.
Половинная мощность
Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.
Мощность, близкая к максимальной
Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.
Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.
Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.
В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.
Переключение тиристора через «ноль»
Обозначения:
- A – график полуволн переменного напряжения;
- B – работа тиристора при 50% от максимальной мощности;
- C – график, отображающий работу тиристора при 66%;
- D – 75% от максимума.
Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.
Видео: Испытания тиристорного регулятора мощности
Схема простого регулятора мощности
Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции. Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства (являющиеся по сути регуляторами мощности) не составит труда сделать своими руками.
Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника.
Простейший регулятор
Радиоэлементы, обозначенные на схеме:
- VD – КД209 (или близкий ему по характеристикам)
- VS- KУ203В или его аналог;
- R1 – сопротивление с номиналом 15кОм;
- R2 – резистор переменного типа 30кОм;
- С –емкость электролитического типа ч номиналом 4,7мкФ и напряжением от 50В;
- Rn – нагрузка (в нашем случае в качестве нее выступает паяльник).
Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Время зарядки конденсатора (оно регулируется сопротивлением R2) влияет на длительность «открытия» тиристора. Ниже показан график работы устройства.
Влияние сопротивления R2 на работу регулятора
Пояснение к рисунку:
- график A – показывает синусоиду переменного напряжения, поступающего на нагрузку Rn (паяльник) при сопротивлении R2 близком к 0 кОм;
- график B – отображает амплитуду синусоиды поступающего на паяльник напряжения при сопротивлении R2 равном 15 кОм;
- график C, как видно из него, при максимальном сопротивлении R2 (30 кОм) время работы тиристора (t2) становится минимальным, то есть паяльник работает с мощностью примерно около 50% от номинальной.
Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике. Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы.
Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:
-
- подавать напряжение через сглаживающий фильтр (его схему несложно найти), самый простой вариант реализации – ферритовое кольцо с обмотанным вокруг него сетевым кабелем;
Фильтр на основе ферритового кольца от кабеля монитора
- собрать устройство, не создающее помехи, приведем пример такой схемы.
- подавать напряжение через сглаживающий фильтр (его схему несложно найти), самый простой вариант реализации – ферритовое кольцо с обмотанным вокруг него сетевым кабелем;
Регулятор работающий без помех
Ниже представлена схема регулятора мощности, не создающего помехи, поскольку он не «обрезает» полуволны, а «отрезает» их определенное количество. Принцип работы такого устройства мы рассматривали в разделе «Принцип работы фазового регулирования», а именно, переключение тиристора через ноль.
Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.
Регулятор, не создающий помехи
Перечень используемых в приборе радиоэлементов, а также варианты их замены:
Тиристор VS – КУ103В;
Диоды:
VD1-VD4 – КД209 (в принципе можно использовать любые аналоги, которые допускают величину обратного напряжения более 300В, а ток свыше 0,5А); VD5 и VD7 – КД521 (допускается ставить любой диод импульсного типа); VD6 – KC191 (можно использовать аналог с напряжением стабилизации равным 9В)
Конденсаторы:
С1 – электролитического типа с емкостью 100мкФ, рассчитанный на напряжение не менее 16В; С2 – 33Н; С3 – 1мкФ.
Резисторы:
Микросхемы:
DD1 — K176 ЛЕ5 (или ЛА7); DD2 –K176TM2. В качестве альтернативы можно использовать логику серии 561;
Rn – паяльник, подключенный в качестве нагрузки.
Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется. Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R5.
В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов (не забудьте перед этим отключить его от сети).
Устройство регулятора мощности своими руками
Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.
Простейший регулятор энергии
Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.
Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:
металлическими;
- жидкостными;
- угольными;
- керамическими.
Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.
Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.
Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.
Виды современных устройств
Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.
На сегодняшний момент производство выпускает следующие типы приборов:
- Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
- Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
- Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.
При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:
- плавность регулировки;
- рабочую и пиковую подводимую мощность;
- диапазон входного рабочего сигнала;
- КПД.
Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.
Тиристорный прибор управления
Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.
Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.
Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.
Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.
Симисторный преобразователь мощности
Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.
Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.
Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.
Фазовый способ трансформации
Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.
Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.
При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.
Практические примеры для повторения
Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.
Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.
Доминирующая схема
Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.
Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.
При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.
В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.
Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.
Контроллер нагрева паяльника
Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.
Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.
Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.
Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.
Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.
Originally posted 2018-07-04 07:13:04.
В настоящее время ЭТУ индукционного нагрева, плавки металлов являются наиболее энергоемкими, причем на установки с плавильными печами и для нагрева крупногабаритных деталей под пластическую деформацию приходится основная часть мощностей как по единичной мощности, так и по относительной массовости их использования. Для питания таких установок требуются ВИП повышенной мощности (0,5–4 МВт), при этом для наиболее крупных групп мощность может достигать 10–40 МВт при выходной частоте от 500 до 2400 Гц [1, 2, 3, 4].
Так, например, индукционные плавильные печи предназначены для открытой или вакуумной плавки сталей, особо чистых алюминиевых сплавов и других металлов. Емкость их может достигать 10 т при требуемой номинальной мощности ВИП до 4,2 МВт. В зависимости от емкости печей (требуемой мощности) питание таких ЭТУ осуществляется от промышленной сети с напряжением 6, 10 или 0,4 кВ через ВИП с частотой 500–1000 Гц или 2000–2400 Гц при относительно малой емкости печей. По надежности электроснабжения такие установки относятся к потребителям второй категории. Исключительно широкое применение нашли установки для индукционного нагрева кузнечных заготовок, различных по форме и размерам, перед обработкой их давлением (штамповка, ковка, штамповка методом сверхпластичности), для поверхностной закалки деталей, а также как вакуумные индукционные нагреватели. Выходная частота ВИП для таких ЭТУ лежит в пределах от 0,5 до 10 кГц, при этом верхнее значение их мощности составляет: 0,25–0,45 МВт — для закалочных установок; 1,0–1,5 МВт — для вакуумных нагревательных установок; 1,5–2,0 МВт и более — для кузнечных нагревателей [1, 2, 3, 4].
В данной работе выделены основные проблемы и задачи, возникающие при разработке ВИП большой мощности для ЭТУ индукционного нагрева крупногабаритных деталей, термообработки сварных швов труб, плавки металлов и др., рассмотрены схемотехнические решения и структуры построения таких ВИП на основе ТПЧ с АИР, удвоением частоты, встречными диодами, закрытым входом и умножением выходного напряжения, приведены результаты моделирования процессов в АИР в среде Matlab с помощью инструментов пакета Simulink.
Создание ВИП повышенной мощности для ЭТУ связано с решением ряда проблем и выполнением разнообразных требований, часто противоречащих друг другу. Они определяются как особенностями преобразования параметров электрической энергии большой мощности с получением высоких (требуемых) технико-экономических показателей, так и требованиями высокой надежности, регулируемости выходной мощности и устойчивости работы ВИП с учетом изменения характера и величины нагрузки современных ЭТУ, ограничений влияния на питающую сеть при различных режимах работы, требований экологических служб и др. Анализ основных проблем и требований, существующих методов и средств их реализации, а также особенностей развития современных ЭТУ показывает необходимость использования системного подхода при разработке ВИП повышенной мощности для ЭТУ с индукционным методом воздействия на металл. В результате, учитывая, что основные показатели ЭТУ во многом определяются ВИП, то одним из важных начальных этапов создания является выбор структуры технологической системы и схемной реализации ВИП повышенной мощности, отвечающих указанным выше требованиям. Определяющими требованиями к таким ВИП являются: устойчивая работа и стабилизация напряжения (тока) на элементах схемы, и в первую очередь на силовых полупроводниковых приборах (СПП), при изменениях характера и величины нагрузки в широких пределах; исключение аварийного состояния в режимах к. з. и х. х. нагрузки; высокий КПД; возможность регулирования напряжения (мощности) на нагрузке без снижения показателей ВИП в необходимых пределах (по наиболее рациональной реализации технологического процесса); возможность получения повышенного (необходимого) значения выходного напряжения без использования нагрузочного трансформатора; а также параллельной работы отдельных или групп мостов (ячеек) для увеличения мощности [4, 5, 6, 7].
Многочисленные теоретические, экспериментальные исследования, а также достаточно длительный опыт промышленной эксплуатации ТПЧ с различными группами схем АИР с удвоением частоты и встречными диодами показывают возможность и целесообразность использования группы с закрытым входом и умножением выходного напряжения для реализации мощных ВИП среднечастотного диапазона [4–7, 9–14, 17].
В настоящее время характерными особенностями развития и построения современных ЭТУ с индукционным и другими методами воздействия на материал являются: использование разнообразных прогрессивных технологических процессов как для получения металлов, сплавов и конструкционных материалов высокого качества с особыми свойствами, так и для формовки, обработки заготовок, деталей и изделий в таких важных отраслях промышленности, как авиационная, космическая, химическая и др.; использование в своей структуре измерительно-вычислительных комплексов (ИВК), микропроцессоров (МП), микроконтроллеров (МК) и ЭВМ в системе управления, регулирования, контроля и диагностики ВИП и управляемого объекта (УО-нагрузки), представляющего собой нагрузочный колебательный контур [1, 3, 4, 6, 7, 14, 15].
Рис. 1. Обобщенная структурная схема ЭТУ с управляемым ВИП
В результате обобщенную структурную схему современных ЭТУ с управляемым ВИП (ТПЧ с АИР) и УО, согласно [15], можно представить в виде взаимодействия двух каналов (рис. 1): силового — ТПЧ (ВИП), УО и информационного — ИВК, которые через систему управления (СУ) связаны с верхним уровнем управления — (ЭВМ), где ОП — оператор, УОИ — устройство отображения информации, а УО представляет собой мощную индукционную тигельную печь для плавки металлов. Наличие в силовом канале ЭТУ управляемого ВИП и УО позволяет значительно улучшить технико-экономические показатели, экологическую обстановку, расширить функциональные возможности и повысить надежность. Информационный канал служит для управления потоком энергии от ВИП к УО, а также для сбора и обработки сигналов о состоянии и функционировании системы контроля и диагностики. Информационный канал может взаимодействовать со всеми элементами силового канала, а также с оператором и системой верхнего уровня управления. Постоянный рост требований к ЭТУ с ВИП по таким показателям, как энергетическая эффективность, надежность, быстродействие и качество регулирования, ресурсоемкость и электромагнитная совместимость вызывает необходимость совершенствования всех элементов, входящих в общую технологическую схему. Следует отметить, что указанные выше показатели во многом определяются ВИП. В связи с этим необходимо также отметить, что увеличение единичной мощности и выходной частоты ВИП связано с решением ряда дополнительных проблем и задач по достижению необходимого уровня указанных выше показателей.
Рассмотрим этапы создания, особенности построения и характеристики схем АИР с удвоением частоты, встречными диодами и закрытым входом, работы по которым были начаты в уфимском авиационном институте под научным руководством С. М. Кацнельсона еще в 1969–1970 годах [6, 8, 9]. В дальнейшем результатами этих работ стали разработка группы схем АИР с закрытым входом с такими важными свойствами, как плавное глубокое регулирование мощности, умножение выходного напряжения и др., а также внедрение в промышленную эксплуатацию ТПЧ (ТПЧ–1500–1,0) мощностью 1,5 МВт и частотой 1 кГц для методического нагрева стальных заготовок квадратного сечения со сторонами 115 мм на заводе «Сельмаш» г. Кирова [6, 7, 10–14, 17].
При построении мощных ВИП весьма важным является, в первую очередь, выбор одного из основных его элементов — СПП, которые определяют как технико-экономические, так и схемотехнические и конструктивные показатели. Анализ параметров, характеристик и областей применения современных СПП показывает, что, несмотря на наличие новых, широко используемых, полностью управляемых СПП, таких как полевые (MOSFET), совмещенные (IGBT) транзисторы и модули на их основе, современные не полностью управляемые (SCR) и запираемые (GTO, GCT, IGCT) тиристоры в настоящее время не имеют альтернативы при создании ВИП на большие и сверхбольшие мощности с частотами до нескольких единиц килогерц [16]. Следует отметить, что использование не полностью управляемых тиристоров в схемах мощных АИР с удвоением частоты, встречными диодами на частоты до 1,5–2 кГц является наиболее предпочтительным благодаря простоте запирания, наряду с такими известными преимуществами их, как сравнительно малое падение напряжения, высокая перегрузочная способность, простота управления, относительно большие допустимые значения напряжений и токов, а также низкая стоимость. Важной проблемой при создании мощных ВИП является получение (или повышение) КПД уровня достигнутых значений на относительно малых мощностях при равной выходной частоте. В общем случае потери в ВИП определяются потерями во входной ВП (рис. 1) и выходной АИР частях ТПЧ. Как показал опыт промышленной эксплуатации, анализ параметров и характеристик схем АИР с открытым входом, удвоением частоты и встречными диодами, при питании их от промышленной сети с напряжением 0,4 кВ, область их использования ограничивается мощностями 400–450 кВт и частотами от 2 кГц до 4–5 кГц [6, 7. 17]. На частотах ниже 1,5–2 кГц происходит снижение КПД и энергетической эффективности из-за значительного роста установленной мощности конденсаторного оборудования, потерь в них с увеличением мощности и снижением частоты, а также потерь в СПП, кабелях, шинопроводах и других элементах из-за относительно низкого значения напряжения питающей сети (~Uc) и выходного Uвых (Uн) АИР [6, 7]. В связи с этим некоторое снижение потерь во входной части достигается за счет использования промышленной сети с напряжениями 0,66, 6, 10 кВ. Таким образом, основным решением этого вопроса при реализации АИР на частоты ниже 1,5 кГц и мощности более 500 кВт является снижение эффективности конденсаторного оборудования и повышение Uвых [6].
Для сравнения рассматриваемых схем АИР по Uвых используется коээфициент KUН, определяемый по выражению:
где Uвх (Ud) = 520 В— среднее значение постоянного напряжения на выходе (Ud) мостового ВП, т. е. на входе АИР (Uвх), при питании от трехфазной промышленной сети с напряжением 0,4 кВ, Uвых (Uн) — действующее значение выходного напряжения АИР. Для схем АИР с открытым входом, удвоением частоты и встречными диодами KUН = 0,5. Необходимо отметить, что промышленные индукционные плавильные печи и нагревательные установки выполняются обычно на напряжения 375, 500, 750, 1000, 1600, 3000 В.
На начальном этапе решения рассмотренных выше проблем были разработаны, с сохранением всех достоинств АИР с открытым входом, удвоением частоты и встречными диодами, новые схемы, в которых значительно снижена установленная мощность разделительных (Cр) конденсаторов [8], либо полностью они исключены [9], а также выполняется удвоение выходного напряжения, т. е. KUН = 1,0. АИР без Cр [9] классифицируется как однокаскадный с закрытым входом и удвоением вы- ходного напряжения. Базовый вариант такой схемы состоит из двух инверторных мостов, при этом исключение Cр и удвоение выходного напряжения осуществляется благодаря каскадному (последовательному) соединению мостов по переменному (выходному) току, алгоритму поочередного управления тиристорами мостов со сдвигом в 180° эл. выходной частоты и включению нагрузки в цепь переменного тока между одноименными выводами питания двух мостов, питание которых постоянным током осуществляется параллельно от одного источника через входные дроссели. В результате переменный ток замыкается через нагрузку между коммутирующими контурами мостов, которые получаются включенными последовательно, что обусловливает как исключение Cр, так и удвоение напряжения на нагрузке, так как к ней прикладывается суммарное напряжение коммутирующих конденсаторов двух мостов.
Одним из основных, отмеченных выше, требований, особенно к ВИП большой мощности, при реализации современных ЭТУ (рис. 1) является возможность глубокого и плавного регулирования мощности, отдаваемой в нагрузку. Это, в первую очередь, связано с реализацией технологического процесса по закону, обеспечивающему необходимые точность и надежность, а также с выполнением важного, особенно к мощным ВИП, требования — надежного, безударного пуска их, т. е. пуска при минимальной потребляемой мощности из сети с последующим плавным увеличением ее до необходимого значения, определяемого технологическим процессом [6]. Из известных способов регулирования мощности ВИП, как показывают исследования и опыт промышленной эксплуатации АИР с закрытым входом, удвоением частоты и встречными диодами, наиболее полно отвечает этим требованиям фазовый метод регулирования на стороне переменного тока путем геометрического суммирования токов мостов (ячеек) за счет изменения фазы импульсов управления, подаваемых на тиристоры этих мостов [5, 6, 7, 10, 12, 13].
На рис. 2а, б приведены варианты схем регулируемых АИР с закрытым входом, встречными диодами, удвоением частоты и выходного напряжения, в которых используется фазовый метод [10, 13].
Рис. 2. Варианты схем регулируемых АИР с удвоением выходного напряжения
Каждая из приведенных схем АИР содержит по четыре моста М1, 2, 3, 4, состоящих из тиристоров VS1, 2, 3, 4, встречных диодов VD1, 2, 3, 4, коммутирующих конденсаторов Cк и индуктивностей Lк. Питание мостов АИР осуществляется от источника постоянного тока с напряжением Uвх через один входной дроссель Lвх (а) или через два LВХ1 и LВХ2 (б). Нагрузка (УО), представляющая собой скомпенсированный колебательный нагрузочный контур с эквивалентным активным сопротивлением RНЭ, включена между положительными выводами питания мостов двух групп М1,2 и М3,4. Разделение по питанию указанных двух групп мостов в схеме АИР (б) с помощью LВХ2, по сравнению со схемой АИР (а), позволяет ограничить до безопасной величины разрядные аварийные токи Cк одних мостов через тиристоры аварийного моста [18], исключить образование дополнительных контуров протекания циркуляционных токов между мостами и снизить потери при глубоком регулировании Pн (Uн). Нашли применение и другие варианты выполнения АИР с закрытым входом, в которых достигается симметрия напряжения Uн на нагрузке относительно «земли», что необходимо, например, при вакуумной плавке (нагреве) металлов [6, 7, 12].
Рис. 3. Временные диаграммы работы АИР с удвоением выходного напряжения
Рассмотрим процессы в АИР по рис. 2а, б, временные диаграммы работы которых приведенных на рис. 3, для установившегося режима при максимальной Pн (Uн) и естественного выключения встречных диодов. На рис. 3 приведены соответственно: импульсы управления iУ1,3, iУ2,4, подаваемые на тиристоры VS1,3 и VS2,4 соответствующих мостов М1,3 или М2,4; токи, протекающие через тиристоры iVS1,3; iVS2,4, встречные диоды iVD1,3; iVD2,4 и нагрузку iН (uН), где γ — угол коммутации тиристоров; β — угол регулирования Pн (Uн); tВСС = t3 – t4 — схемное время восстановления тиристоров. Как видно из рис. 3, особенностью алгоритма управления таких АИР является то, что импульсы управления, подаваемые на тиристоры внутри каждой группы мостов М1,2 и М3,4, сдвинуты на постоянный угол на 180° эл. по частоте ωУ (ωВ) выходного напряжения Uн, независимо от режима работы.
Согласно рис. 3 в момент t0 включаются тиристоры VS1,3 М1,3, одновременно ток продолжают проводить VS1,3 М2,4. В результате в интервале угла γ происходит коммутация тока с VS1,3 М2,4 на VS1,3 М1,3 и далее включаются встречные диоды VD1,3 М2,4. Через тиристоры АИР, кроме колебательного тока, протекает и постоянная составляющая входного тока. В момент t1 встречные диоды VD1,3 М2,4 выключаются и в интервале t1–t2 через тиристоры VS1,3 М1,3 будет протекать ток, равный входному току АИР, т. е. I0, благодаря относительно большой величине LВХ (LВХ1, LВХ12). Далее в момент t2 включаются тиристоры VS2, 4 М2, 4, и процесс повторяется. Таким образом, колебательные токи двух указанных групп мостов складываются в нагрузке (iН), а напряжение на них будет определяться суммарным напряжением на CК мостов каждой из групп, действующее значение которого Uн ≈ Uвх, т. е. в рассматриваемых схемах АИР имеет место удвоение выходного напряжения. Схемное время восстановления тиристоров определяется интервалом проводимости встречных диодов t3 – t4 = tВСС, который зависит от затухания колебательного контура данных АИР d = RНЭ / ρ, где ρ = √LK / CK — волновое сопротивление контура.
Регулирование Pн (Uн) в данных схемах АИР осуществляется путем геометрического суммирования токов двух групп мостов М1,2 и М3,4 за счет фазового сдвига импульсов управления тиристорами одной группы относительно другой. Для исследования процесса фазового регулирования и получения регулировочных характеристик была разработана модель АИР с удвоением частоты и выходного напряжения (рис. 2а, б) в системе Matlab с помощью пакета Simulink, которая для АИР по рис. 2б приведена на рис. 4. Обозначения блоков и элементов в модели идентичны обозначениям по рис. 2б, для сокращения количества линий связи и упрощения соединительные точки с одинаковыми электрическими потенциалами в модели выполнены в виде треугольников с одинаковыми номерами. В модели приведены блоки для контроля, измерения параметров (токов, напряжения, времени) и блок управления. При моделировании приняты реальные значения параметров СПП, их защитных RC-цепочек, активных сопротивлений индуктивностей, а также следующие параметры АИР и нагрузки: ρ = 0,312 Ом, Uвх = 520 В, Pнm = 1 МВт, fВ (ωВ) = 1000 Гц — выходная частота, f0(ω0) = 1100 Гц — собственная частота колебательного контура, Rн = Rнэ = 0,25 Ом, d = 0,8. Регулирование Uн (Pн) осуществляется путем изменения фазы (β) отпирающих импульсов тиристоров мостов М3, 4 относительно М1, 2 в сторону отставания от 0 до 180° эл. (рис. 3). Для получения и анализа основных характеристик регулируемых АИР используются блоки контроля и измерения.
Рис. 4. Модель регулируемого АИР с удвоением выходного напряжения
Основными характеристиками, определяющими применимость регулируемых АИР с удвоением выходного напряжения для реализации различных технологических процессов, являются: регулировочная характеристика и надежность работы в процессе регулирования. Регулировочная характеристика в относительных единицах представляет собой зависимость U*Н (P*Н) = F (β) при d = const, где U*Н = UН / UВХ, P*н = Pн / Pнm. Надежность работы регулируемых тиристорных АИР наиболее реально может быть оценена зависимостью t*ВСС = F (β) при максимально допустимом значении d, где t*ВСС = 2 tВСС/T0, а T0 =1/f0. На рис. 5а, б приведены эти зависимости при допустимом значении d = 0,8, для АИР по рис. 2 а, б, где пунктирной линией выполнена зависимость U*н = F (β) для АИР по рис. 2а. Как видно из характеристики (рис. 5б), в рассматриваемых АИР наблюдается некоторое снижение tВСС тиристоров в опережающих мостах (М1, 2) при определенных значениях β, что связано с протеканием циркуляционных токов между мостами различных групп. Это снижение несколько больше в схеме АИР по рис. 2а. Однако на средних частотах 500–1500 Гц для схем регулируемых АИР с удвоением частоты и напряжения это снижение tВСС не является существенным.
Рис. 5. Зависимости U*Н= F (β) — а, t*ВСС= F(d) — б при d = 0,8 для АИР по рис. 2б
С ростом мощности ВИП возникают проблемы, связанные с процессами передачи энергии на определенные расстояния внутри цеха или между цехом и преобразовательной подстанцией, а также согласования ВИП с высоковольтной нагрузкой. Потери напряжения и энергии в этих случаях и питание ВИП от промышленной сети с Uc = 0,4 кВ оказываются недопустимо большими, а согласование с нагрузкой невыполнимо. Рассмотренные выше АИР с удвоением Uвых позволяют частично решить эти вопросы, однако при мощностях ВИП более 500–700 кВт этого недостаточно, а повышение Uс сети или Uвых АИР с помощью промежуточных трансформаторов значительно усложняет ЭТУ, снижает КПД и другие показатели.
Получение необходимых высоких значений Uвых ВИП при питании от сети с Uс = 0,4 кВ без применения дополнительных силовых устройств можно реализовать в АИР с удвоением частоты и закрытым входом с каскадным соединением мостов [7, 11, 12]. На рис. 6а приведена схема нерегулируемого двухкаскадного АИР с непосредственными связями между каскадами и умножением выходного напряжения, где каждый каскад, как показано выше, состоит из двух мостов, т. е. KUН = 2K, где К — число каскадов. На рис. 6б приведена схема регулируемого двухкаскадного АИР, состоящего из двух (АИР1, АИР2) нерегулируемых (а) включенных параллельно на общую нагрузку RНЭ. Работа данного АИР при регулировании Uн (Pн) идентична описанной выше схеме регулируемого однокаскадного АИР.
Рис. 6. Схемы АИР с умножением выходного напряжения:
а — нерегулируемого;
б — с регулированием PН (UН)
Особенностями многокаскадных АИР с закрытым входом и встречными диодами являются непосредственные связи между каскадами и только четное число мостов. Как видно из рис. 6а, непосредственно соединяются между собой попарно и поочередно катодные и анодные группы тиристоров мостов, а нагрузка RНЭ включается между анодными группами тиристоров первого М1 и последнего М4 инверторного моста. Управление тиристорами осуществляется таким образом, что управляющие импульсы подаются на нечетные (М1, 3) и четные (М2, 4) мосты со сдвигом на половину периода выходного напряжения. Тогда во время работы тиристоров М1, 3 колебательный ток замыкается через встречные диоды М2, 4 и нагрузку. Напряжение на нагрузке RНЭ определяется суммарным напряжением на CК всех мостов. В результате, в данной схеме U*н = 2, т. е. при питании от сети сUс = 0,4 кВ действующее значение составляет Uн = 1000 В.
Рис. 7. Модель АИР с умножением выходного напряжения (рис. 6а)
Исследование на моделях (на рис. 7 приведена модель только для двухкаскадного АИР по рис. 6 а) позволило получить основные зависимости (рис. 8а, б) U*н = F (d) и t*ВСС =F (d) для АИР с числом каскадов К = 1, 2, 3, позволяющие судить о перспективности использования таких АИР для питания ЭТУ мощностью более 1 МВт. При моделировании, независимо от числа каскадов, использовались основные параметры АИР, которые приведены выше для модели по рис. 4.
Рис. 8. Зависимости для каскадных АИР сК= 1, 2, 3:
а) U*Н= F(d) , :
б) t*ВСС = F (d)
Выводы
- Разработана группа схем регулируемых АИР с умножением выходного напряжения, позволяющих реализовать ВИП повышенной мощности среднечастотного диапазона с учетом основных требований современных ЭТУ.
- Выполнено схемотехническое моделирование процессов в разработанных схемах АИР, получены основные характеристики, позволяющие установить диапазон и закон регулирования выходного напряжения (мощности), а также условия надежной работы.
Литература
- Слухоцкий А. Е., Немков В. С.,. Павлов Н. А, Бамунэр А. В. Установки индукционного нагрева: Учеб. пособие для вузов / Под ред. А. Е. Слухоцкого. Л.: Энергоиздат, 1981.
- Миронов Ю. М., Миронова А. Н. Электрооборудование и электроснабжение электротермических, плазменных и лучевых установок: Учеб. пособие для вузов. М.: Энергоатомиздат, 1991.
- Евтюкова И. П., Кацевич Л. С., Некрасова Н. М., Свенчанский А. Д. Электротехнологические промышленные установки: Учеб. для вузов / Под ред. А. Д. Свенчанского М.: Энергоиздат, 1982.
- Беркович Е. И., Ивенский Г. И., Иоффе Ю. С., Матчак А. Т., Моргун В. В. Тиристорные преобразователи повышенной частоты для электротехнологических установок / Л.: Энергоатомиздат, 1983.
- Васильев А. С., Слухоцкий А. Е. Перспективы развития вентильных преобразователей частоты для питания установок индукционного нагрева // Электротехника. 1980. № 2.
- Аитов И. Л. Исследование тиристорных многомостовых преобразователей повышенной частоты с фазовым регулированием мощности: Дис. канд. техн. наук. Уфа: УАИ, 1974.
- И. Л. Аитов, С. М. Кацнельсон. Автономные преобразователи частоты: Учеб. пособие / Уфа: УАИ, 1978.
- Автономный инвертор. А. С. № 286043 РФ. Кацнельсон С. М., Аитов И. Л., Пудровский Л. С. БИ. 1970. № 34.
- Кацнельсов С. М., Аитов И. Л., Охотников В. А. Тиристорный преобразователь с нагрузкой, включенной между входными дросселями инверторных мостов // Труды УАИ, сб. 2: Тиристорные преобразователи частоты для индукционного нагрева металлов. Уфа: УАИ, 1972.
- Способ регулирования выходного напряжения многомостового автономного инвертора. А. С. № 399038 РФ. Кацнельсон С. М., Аитов И. Л., Гутин Л. И., Малкин Б. Н., Охотников В. А. БИ. 1973. № 38 (приоритет от 03.11.1971).
- Патент № 669459 РФ. Автономный инвертор. Аитов И. Л. БИ. 1979. № 23.
- Патент № 18245 UA. Автономный инвертор. Лупкин Б. В., Аитов И. Л., Самигуллин Р. З. БИ. 2006. № 11.
- Последовательный автономный инвертор. А. С. № 936297. Аитов И. Л. БИ. 1982. № 22.
- Аитов И. Л., Зиннатуллин Р. И. Тиристорные источники питания для ответственных электротехнологических установок // Силовая электроника. 2008. № 2.
- Бычков М., Ремизевич Т. Современные электронные компоненты для электропривода // Электронные компоненты (М.). 2002. № 6.
- Флоренцев С. Современное состояние и прогноз развития приборов силовой электроники // СТА (М.).
- Воробьев Ю. В. Разработка и исследование тиристорного исполнительного элемента частотно-параметрической системы стабилизации мощности многопозиционной индукционной установки: Дис. канд. техн. наук. Уфа: УАИ, 1980.
- Аитов И. Л., Кутдусов Ф. Х. Анализ аварийного процесса при срыве режима инвертирования в многомостовых резонансных инверторах с индуктивным входом // Электромеханика. Известия вузов. 1984. № 5.
Тиристор — это устройство, состоящее из полупроводника и имеющее, как правило, лишь два активных положения: “закрытое” и “открытое”. В первом случае монокристаллический полупроводник пребывает в состоянии наименьшей электропроводности, а во втором — в наибольшей.
Стоит отметить, что в двух этих устойчивых состояниях переходная фаза осуществляется при определенных обстоятельствах, но при этом процесс проходит довольно быстро.
По принципу работы прибор следует соотнести с электронным переключателем, однако между ними есть небольшие различия: тиристор может перемыкаться благодаря давлению, а выключаться лишь с помощью сброса наполнения и подачи тока. Таким образом, принцип действия полупроводникового датчика не является каким-то сложным процессом.
В большинстве своем, тиристор используется в качестве ключа или электронного выключателя, которые применяются в электрических механических системах.
Устройство тиристора
Фиксирование устойчивого состояния прибора возможно благодаря наличию ряду особенностей во внутреннем строении устройства. На представленной ниже схеме можно в этом убедиться:
На этой структуре становится очевидным тот факт, что тиристор представлен в виде 2-х простых электронных транзисторов, которые не похожи по своей структуре, однако связаны между собой. Кроме того, ключевую роль в составе полупроводникового электроприбора играют три следующих звена:
- Катод;
- Анод;
- Электрод управления.
Из-за того, что тиристор имеет четыре последовательно-соединенных диода, его переходный слой имеет такую форму: (р) — (п) — (р) — (п). Этот факт объясняет пропускную способность I, который течет лишь в единственной направленности направлении: от плюса к минусу.
Говоря и описывая внешний вид тиристоров, надо сказать, что они производятся из разных корпусов, поэтому исключен вариант с простым отводом тепла, однако, из-за наличия массивного металлического корпуса, способны выдерживать большие токи.
Принцип работы тиристора
По принципу работы, как мы уже говорили ранее, устройство следует сравнить с электронным переключателем, ведь они оба способны пропускать ток лишь в одном направлении (к катоду от анода). При этом заметим — это будет возможно лишь в устойчивом «открытом» положении.
Перейдем теперь непосредственно к рассмотрению механизма действия тиристора. Начальное состояние прибора — «закрытое». Знаком или сигналом начала переходного процесса к «открытому» можно считать возникновение напряжения, появляющееся промеж положительного электрода и управляющего вывода. Провернуть обратное действие можно следующими методами:
- снизить давление;
- понизить степень тока.
В строениях с не постоянным током используется второй вариант. Но этому можно найти свое объяснение, ведь переменный ток в электросети представлен в синусоидоподобном виде, где величина его стремится к нулевому показателю и очень часто сбрасывается. Говоря о структурах с постоянным током, то чаще применяется первый вариант.
Раскрытое и замкнутое положение
Итак, как мы поняли, принцип действия нашего прибора различен. В строениях постоянного напряжения, уже после его кратковременного повышения, осуществляется переход из начального состояния в «открытое». Затем рассматривается два возможных варианта:
- «Открытое» положение может держатся и после пропажи управления напряжения на анодном выходе. Это может стать возможным если “U”, которое подают на анодный управленческий вывод, будет больше, нежели ем отпирающее “U”. Заканчивается проход электротока через устройство, по большому счету, лишь отрывом электроцепи или отключением питательного источника (при этом оба данных процесса обязаны быть кратковременными). Зачем электрический ток (когда прошло восстановление сей цепи) перестает течь. Чтобы ток все же пустить, необходимо снова подать напряжение.
- Устройство перейдет в «замкнутое» положение моментально же после уменьшения величин напряжений.
Таким образом, в системах, где ток = constant, существует несколько способов эксплуатации нашего электроприбора:
- При помощи удерживания «раскрытого» состояния;
- Полностью противоположный первому вариант.
Стоит заметить — чаще всего используется способ под 1-м номером. Условия работы тиристора в конструкциях, где напряжение не равно константе, имеют отличия. Там возврат в начальное положение проходит в автоматическом порядке, то бишь вследствие уменьшения силового тока. В том случае, когда напряжения к плюсу и минусу, подносить часто, на выводе получится так, что произойдет образование P тока некоторой частоты. Вот таким образом и настроены системы импульсного питательного корпуса, который способен формализовать синусоиду в P.
Основные параметры тиристора
Пришла очередь разобраться в ключевых параметрах тиристора. Безусловно, о них важно сказать и их необходимо понять.
Начнем с отпирающего постоянного напряжения управления “Vy” – это есть минимальная постоянная величина напряжения на электроде управления. “Vy” вызывает некоторый переходный процесс тиристора из “закрытого” положения в “открытое”. Таким образом, именно наличие отпирающего постоянного напряжения объясняет открытие прибора и присутствия в электроцепи постоянного или переменного тока.
Вторым важным параметром является величина обратного напряжения “V обр max”. Именно этот элемент демонстрирует такое значение напряжения, которое Ну и последнее – “I ср” – средняя величина тока. “I ср” показывает, какое количество тока может протекать через полупроводниковое устройство.
Характеристики тиристоров
Выбор тиристоров по технико-механическим свойствам определяется зависимостью напряжений в электроцепи от требуемого электротока. Рассмотрим ключевые механические характеристики тиристоров:
- Максимальная величина допустимого тока (данное значение показывает максимально-возможное значение она показывает максимально-возможное значение прибора в «открытом» положении);
- Max величина допустимого диодного тока;
- Прямое напряжение;
- Противоположные показатели напряжения;
- Напряжения выключения;
- Наименьший размер тока на управляющем электрическом проводнике;
- Максимальная допускаемая мощность.
Технические свойства тиристора
Теперь перейдем к техническим свойствам:
- Величина максимального обратного напряжения может достигать отметки в 100 Вольт в “открытом” состоянии;
- Значение напряжения в “закрытом” положении составляет 100 Вольт;
- Импульс открытого положения доходит до 30-ти Ампер, а вот повторяющийся — до 10-ти;
- Среднее значение напряжение 1,00-1,50 Вольт;
- Средняя величина тока не устанавливается;
- Временной отрезок включения и отключения прибора сильно отличаются: 10 микросекунд и 100.
Виды тиристоров
Есть несколько образов тиристоров, которые можно классифицировать следующими методами:
- по режимам контроля;
- согласно электропроводности;
- в соответствии с порядком работы;
- по форме управления.
Итак, начнем с классификации тиристоров по режимам контроля. Следует сказать о том, что полупроводниковый инструмент обладает двумя выходными путями, различающиеся в своих открытиях.
Если один открывается вводом напряжения на анодный блок, то другой — на катодный. Однако, есть некоторое замечание: подают не только напряжение, но и импульс. Если импульс связывают с управляющим выходом и катодом, то устройство будет иметь такое название: “Тиристор с катодным управлением”. В противном случае — с анодным.
По электропроводности
Перейдем к другой классификации устройства. Как было сказано ранее — тиристоры (единичные) проводят ток лишь в одном направлении, то есть обратного провода не существует (это первый вид электропроводности). Однако, следует оговориться, ведь мы знаем, что наш прибор работает благодаря подачи напряжения в роли ключа (переключателя), а если использовать двойной элемент, то бишь симметричный тиристор, тогда устройство сможет проводить ток сразу в двух направлениях (это есть обратная электропроводность — 2-й вид).
По режиму работы
Наконец, перейдем к рассмотрению последнего вида классификации. Выделяют три главных, которые чаще всего используется в современных, более усовершенствованных, полупроводниковых элементах:
Также есть возможность рассказать о следующих подвидах тиристора: Запирающиеся и не запирающиеся (в первом случае: «+» прикреплен к отрицательно заряженному электроду, а «-» приложен к положительно заряженному; во 2-ом случае — противоположное положение дел); Быстродейственные (способны за короткий временной отрезок, без потери коэффициента полезного действия, перейти из “закрытого” состояния в “открытое”); Электроимпульсные (с минимальными потерями проводят переходный процесс фаз).
Регулятор тиристора
Важным элементом в системе тиристора является регулятор мощности. Именно его схему мы и рассмотрим:
Данная структура выглядит достаточно просто. Наш диммер (в вышепредставленной конструкции) питается и работает благодаря наличию переменного тока в электросети, напряжение которой составляет 220 Вольт.
Перейдем к составу, регулятор мощности в данном случае включает в себя:
- Диод полупроводника “vd1”;
- Резистор “r1” переменного назначения;
- Резистор “r2” постоянного назначения;
- Емкость малой проводимости “c1”;
- Переключающий прибор Тиристор “vs1”.
Все величины, которые рекомендуется использовать для номинальной схемы, представлены на картинке. Кроме того, надо сказать, что в роли “vd1” (диода) можно применить либо элемент “KД-209”, либо “КУ-103В”, мощность которых больше 2-х Ватт, а напряжение не меньше 50-ти Вольт.
Как узнать Ватт? Используй ваттметр.
Данная структура управляет только одним полупериодом в сетевом процессе. В том случае, если исключить отсюда 4 элемента, кроме полупроводникового диода, тогда он сможет пропустить лишь половину волны с переменным током, а нагрузка, например, на устройства паяльника или лампы накаливания придет только около пятидесяти процентов всей силы выхода.
Способности тиристора
Тиристор способен пропустить условные, говоря простым языком, дополнительные блоки половинчатого периода, которые срезаны “vd1” элементом. Если происходит изменение местоположения резистора “r1” переменного назначения, то работа эффективности электрической системы тоже изменится (в большую или меньшую сторону, в зависимости от напряжения).
К электро-положительному выходу на конденсаторе подключен выводная управляющая трубка прибора. В том случае, когда происходит увеличение напряжения на конденсаторе, то есть величина его доходит определенного уровня, тогда он и начинает пропускать половинчатую часть “+”-го периода.
Резистор переменного назначения сможет определить скоростную способность зарядки устройства. Таким образом, чем раньше зарядка достигнет максимального значения, тем быстрее произойдет открытие тиристора и ему удастся пустить половину полупериода в полярной части.
Стоит сказать и о пассивном электронном компоненте, на который не попадает часть отрицательной полуволны, однако, это не опасно, ведь конденсатор имеет полярное свойство, что позволяет регулировать напряжение на концах элемента.
Итак, наша структура показывает следующее: диммер способен изменить значение мощности в диапазоне 50-ти и 100-та процентов (что является абсолютной нормой для “среднестатистического паяльника”).
Виды регуляторов мощности
Теперь предлагаю вам рассмотреть все виды регуляторов мощности, их достаточно много, но небольшие знания о них не помешают точно никому:
- Диммер. Тот самый инструмент , про который шла речь в нашей структуре. Чаще всего его используют в качестве управляющего элемента мощностной нагрузки, при этом, в цепь подключается последовательно. Если мы говорим о статистике, то диммер применяется ради поправки световой яркости в различных типах ламп;
- Автоматический регулятор мощности. Представляет из себя электронную структуру, которая позволяет изменить показания подводимой мощности (это происходит благодаря удержанию процесса включения прибора в работу на половинчатом периоде с переменным током);
- Регулятор “Симосторной” мощности. Аналог автоматического регулятора, также используется в электроцепях с переменным током (применяется для мгновенных изменений различных параметров цепи);
- Авто-электронный регулятор мощности. Это система, предназначенная для регулирования мощности хода и для управленческого процесса в оборотах электродвигателей;
- “Дуговой” диммер мощности. Это элемент, имеющий ту конструкцию, которая способна обеспечить поддержку на постоянной основе определенному значению дугового горения.
Применение тиристоров
Итак, как вам стало известно ранее, основным назначением тиристоров является их способность управлять мощностью нагрузки.
Кроме того, они имеют ряд других достоинств, а именно: быть “выпрямителем”, иметь два номинально-устойчивых положения, служить в качестве усилителя тока. Именно из-за вышеназванных качественных особенностей, полупроводниковый прибор нашел достаточно широкое применение.
Тиристор используют в роли включателя/выключателя/переключателя в электрических коммутационных устройствах, ведь он способен замыкать и размыкать электроцепь.
Также его активно задействуют как аппарат преобразования (так как тиристор способен генерировать постоянный ток в переменный) в солнечных батареях, в системах бесперебойного питания и в других областях, связанных с электроснабжениях.
Следует сказать и о возможностях тиристора в электронном зажигании, ведь устройство эксплуатируют в двигателях внутреннего сгорания, трамблерах и аккумуляторах для работы стартера.
Если говорить про быт, то надо напомнить, что полупроводниковое устройство применяется в сварке или машиностроении в качестве все того же инвертора.
Где купить тиристор?
Очевидно, что тиристор является достаточно эффективным электрическим аппаратом, который востребован в нынешнее время. Вы спросите: “А где его приобрести?”.
Я, конечно же, посоветую вам Aliexpress. Очень крутой интернет-магазин, выручающий практически всегда. Там не только все легко и понятно, а главное дешево и разнообразно (в плане выбора товара). Что касается тиристоров, то на Aliexpress их огромное количество видов типов, есть и аналоги. В общем, пользуйтесь и приобретайте!
Обязательно нажимай и переходи на сайт алиэкспресс!